Informe del Programa de Sedimentos Suspendidos Periodo 1998-2007

AUTORIDAD DEL CANAL DE PANAMÁ
DEPARTAMENTO DE AMBIENTE, AGUA Y ENERGÍA
DIVISIÓN DE AGUA
SECCIÓN DE RECURSOS HÍDRICOS
UNIDAD DE HIDROLOGÍA OPERATIVA

Pedro Miguel, Panamá Junio 2010

AUTORIDAD DEL CANAL DE PANAMÁ DIVISIÓN DE AGUA

SECCIÓN DE RECURSOS HÍDRICOS UNIDAD DE HIDROLOGÍA OPERATIVA

INFORME DEL PROGRAMA DE SEDIMENTOS SUSPENDIDOS DEL PERIODO 1998-2007

POR: TOMÁS A. GARCÍA L.

PEDRO MIGUEL, PANAMÁ

JUNIO DE 2010

Autoridad del Canal de Panamá
Departamento de Ambiente, Agua y Energía
División de Agua
Sección de Recursos Hídricos
Unidad de Hidrología Operativa

Para información adicional sobre el Informe escribir al:

Supervisor de la Unidad de Hidrología Operativa Sección de Recursos Hídricos División de Agua Autoridad del Canal de Panamá Edificio 105 - Pedro Miguel República de Panamá

> Teléfono: (507) 276-7163 Fax: (507) 276-7136

Correo electrónico: jmassot@pancanal.com

ÍNDICE

1	Intro	oduc	ción	2
	1.1		neralidades	
	1.2	Ante	ecedentes	3
	1.2.	1	Programa de medición del caudal de sedimentos suspendidos	3
	1.2.	2	Batimetrías	
	1.3	Situ	ación actual	
	1.4		etivos	
	1.4.	1	Objetivo general	5
	1.4.	2	Objetivos específicos	5
	1.5	Def	inición de términos	5
2	Rev	isiór	n bibliográfica	g
	2.1		co teórico	
	2.2	Estu	udios previos	
	2.2.		Kellog, H.F., 1931	
	2.2.		Wadsworth, F.H., 1978	
	2.2.		Larson, C.L., 1979	
	2.2.		Alvarado, Luis A., 1985	
	2.2.		Tutzauer, Jack R., 1990	
_	2.2.	-	Madden reservoir storage capacity loss, División de Ingeniería,1997	
3			ogía	
	3.1		acterísticas físicas de las subcuencas	
	3.2		copilación de información	
	3.3		estreos de campo	
	3.4		ilisis de laboratorio	
4	3.5		cesamiento de datos	
4	4.1		dosvas de descarga de sedimentos suspendidos	
	4.1			
		Uau مخtri	ıdal y producción de sedimentos suspendidos en subcuencas sin control	2/
	4.3		ıdal y producción de sedimentos suspendidos en subcuencas con contro	
	_			
	4.4		úmenes de sedimentos, tasas de sedimentación y pérdida de capacidad	
			niento de agua de los embalses Alhajuela y Gatún	
	4.5		a media de los embalses Alhajuela y Gatún	
5	_		iones y recomendaciones	
6			afia	

Anexos

1 Introducción

La acumulación de sedimentos disminuye la capacidad de almacenamiento de agua del volumen útil¹ en los embalses, haciéndolos menos eficientes para el suministro de agua y para el control de inundaciones. Además, puede obstruir las tomas de agua y deteriorar la calidad del agua, entre algunos de los problemas que ocasiona.

La información sobre sedimentos suspendidos de los principales ríos, en conjunto con las batimetrías, es importante para la Cuenca Hidrográfica del Canal de Panamá (CHCP) ya que sirve de base para cuantificar los volúmenes de sedimentos que ingresan a los embalses y determinar la capacidad disponible de almacenamiento de agua.

La evaluación de los volúmenes de sedimentos que ingresan a los embalses y de la consecuente pérdida en la capacidad de almacenamiento de agua, realizada con suficiente anticipación, permite planificar y ejecutar medidas de control de erosión de suelos y de sedimentación, de forma tal que se garantice el aprovechamiento óptimo de los embalses por un largo periodo.

La información sobre sedimentos permite también caracterizar las tasas de producción de forma espacial y temporal, así como su relación con los diferentes usos de la tierra y factores morfológicos y climáticos para una mayor comprensión de los procesos de erosión de suelos y sedimentación en la CHCP. Además, sirve de referencia para futuros estudios hidrológicos relacionados con el diseño de obras hidráulicas dentro o fuera de la CHCP.

1.1 Generalidades

La CHCP tiene un área de drenaje de 3338 km² y está constituida por las subcuencas de los embalses Gatún y Alhajuela. Los aportes de agua de estas subcuencas están regulados por las represas Gatún y Madden, respectivamente. Estas represas permiten la administración y aprovechamiento del recurso hídrico al suministrar agua para potabilizar y distribuir a las ciudades de Panamá, Colón, Chorrera y alrededores; habilitar el tránsito de barcos y generar energía eléctrica con capacidad de 60 MW.

La subcuenca del embalse Gatún, hasta el sitio de la represa ubicada en el río Chagres próximo a su descarga en el mar caribe, tiene un área de drenaje de 2312 km² que incluye el espejo de agua del embalse de 434 km² a la elevación máxima de operación de 26.67 m (87.50 pies). El área de suelo, de las subcuencas de ríos y quebradas, que contribuye con aportes de sedimentos en suspensión corresponde a 1878 km². Las subcuencas principales que drenan hacia el embalse Gatún corresponden a los ríos Cirí Grande, Trinidad y Gatún. El área de drenaje de la subcuenca del embalse Alhajuela, hasta el sitio de la represa Madden ubicada en el tramo medio del río Chagres, es de 1026 km², del cual 976 km² es el área de suelo que aporta sedimentos.

-

¹ Ver 1.5 Definición de términos.

Las subcuencas principales que descargan sus aguas y sedimentos en el embalse Alhajuela corresponden a los ríos Chagres, Pequení y Boquerón (ver mapa en Anexo A).

La represa Gatún se terminó de construir en 1913 formando el embalse que se conoce como lago Gatún. El embalse es regulado entre las elevaciones de 24.84 m (81.50 pies) y 26.67 m (87.50 pies). En base a la curva elevación-capacidad de 1913, originalmente tenía una capacidad total de almacenamiento de agua de 5493 millones de metros cúbicos (MMC) a la elevación máxima de operación, un volumen útil de 769 MMC y un volumen muerto de 2469 MMC a una elevación de 18.44 m (60.5 pies) que corresponde a la elevación de la toma de agua para hidrogeneración.

La represa Madden se terminó de construir en 1935 creándose el embalse conocido como lago Alhajuela. Éste opera entre las elevaciones de 57.91 m (190 pies) y 76.81 m (252 pies). Inicialmente, según la curva elevación-capacidad de 1928, con una capacidad de almacenamiento de agua de 799.5 MMC a la elevación máxima de operación, un volumen útil de 642.5 MMC y un volumen muerto de 1.0 MMC a la elevación de 27.43 m (90 pies). A esta elevación se ubican seis compuertas de fondo para la limpieza de sedimentos. De acuerdo a un modelo de elevación digital elaborado en 2008 en base a la topografía del embalse de 1928, la capacidad original de almacenamiento de agua se ha recalculado en 766. 5 MMC a la elevación de 76.81 m (252 pies) y el volumen útil en 618 MMC².

El anexo B contiene los niveles operativos y otros datos característicos de ambos embalses.

1.2 Antecedentes

1.2.1 Programa de medición del caudal de sedimentos suspendidos

Las primeras mediciones de sedimentos supendidos en los ríos de la CHCP, aunque no por más de un año completo de registro, datan desde 1900³. En ese entonces se realizaron mediciones en el río Chagres en la estación Bohío y en Alhajuela, cerca de la represa Madden, durante algunos meses del periodo lluvioso (mayo-diciembre). Luego en este mismo sitio se tomaron mediciones entre octubre de 1929 y febrero de 1931 (Anexo C, Cuadro C.1 y Gráfica C.1) con el objetivo de determinar las proyecciones de la vida útil del futuro embalse de la represa Madden.

En septiembre de 1980 se inició de forma sistemática el Programa de medición del caudal de sedimentos suspendidos (PMCSS) en los tres ríos principales que drenan hacia el embalse Alhajuela. Este programa surge en respuesta a estudios publicados a finales de los años setenta, los cuales pronosticaban pérdidas para el año 2000 de hasta 40% en la capacidad de almacenamiento de agua por acumulación de sedimentos (Anexo C).

² Resultados de batimetría 2008. Sección de Topografía, Hidrografía y Cartografía, ACP, agosto de 2008.

³ Data on sediment transportation and deposition in the Canal Zone, The Panama Canal, May 27, 1948

A partir de 1987, el programa se extiendió a los tres ríos principales que drenan hacia el embalse Gatún y en el 2003 se adicionó la subcuenca del río Caño Quebrado.

1.2.2 Batimetrías

Se han realizado batimetrías del embalse Alhajuela en los años 1957, 1972-1973, 1975, 1978,1983, 1998 y la más reciente terminada en enero de 2008.

En el año 1957, el volumen de sedimentos depositados se calculó a partir del levantamiento batimétrico de cinco secciones en el embalse. Para el año de 1973, establecieron siete secciones de sondeo y en 1978 se añadieron dos más para estimar la sedimentación del embalse (Gráfica C-2).

Las batimetrías de los años cincuenta y setenta se hicieron con espaciamientos muy dispersos entre cada sección de sondeo establecida en el embalse. Esto no se considera adecuado para calcular el volumen de sedimentos depositados⁴.

En 1983, la batimetría se realizó hasta una elevación máxima de 71.63 m (235 pies) y en la misma no se levantó información del embalse en el rango de elevación de 71.63 m (235 pies) a 76.81 m (252 pies). Se generaron secciones transversales cada 60.96 m (200 pies).

La batimetría de diciembre de 1997 a enero de 1998, también se realizó a elevaciones bajas del embalse debido al fenómeno de El Niño, sin embargo, para elevaciones por encima de 70.10 m (230 pies), se complementó con levantamientos topográficos. Debido a lo extenso del embalse no se pudo completar la topografía en todos los sectores.

La batimetría más reciente del embalse Alhajuela fue realizada del 17 de diciembre de 2007 al 22 de enero de 2008, periodo durante el cual el embalse se mantuvo a elevaciones altas de operación, o sea, entre 77.69 m (254.91 pies) y 76.21 m (250.04 pies). El espaciamiento entre las líneas de sondeo fue a cada 50 m (160 pies), totalizando 410 secciones transversales a un eje norte-sur establecido en el embalse (Gráfica I-5). Las profundidades en cada sección transversal se midieron con separación de un metro.

En el embalse Gatún no se han realizado batimetrías para determinar los volúmenes de sedimentos acumulados. Por esta razón, este informe evalúa principalmente las tasas de sedimentación en el embalse Alhajuela y se hacen estimados de las tasas de sedimentación en el embalse Gatún a partir de las mediciones de sedimentos en los ríos.

4

⁴ La sedimentación del embalse Alhajuela, Alvarado, Luis A., PCC, junio de 1985.

1.3 Situación actual

El programa de medición del caudal de sedimentos suspendidos forma parte de las responsabilidades de la ACP sobre la gestión de datos hidrológicos que le confiere la Ley Orgánica y el mismo se lleva a cabo como vigilancia de la pérdida en la capacidad de almacenamiento de agua de los embalses y de la erosión de los suelos en la CHCP.

Desde 1980 los Técnicos Hidrólogos (TH) de la Autoridad del Canal de Panamá (ACP) y Observadores Particulares (OP) realizan los muestreos de sedimentos suspendidos, actualmente en siete estaciones hidrométricas de la CHCP: Los Cañones en el río Cirí Grande, El Chorro en el río Trinidad, Caño Quebrado Abajo en el río Caño Quebrado, Ciento en el río Gatún, Peluca en el río Boquerón, Candelaria en el río Pequení y Chico en el río Chagres.

1.4 Objetivos

1.4.1 Objetivo general

Evaluar los resultados del Programa de medición del caudal de sedimentos suspendidos del periodo 1998-2007 y compararlos con aquellos presentados en estudios y/o evaluaciones previas.

1.4.2 Objetivos específicos

A través de los resultados del procesamiento de las concentraciones de sedimentos supendidos y caudales líquidos obtenidos para cada estación hidrométrica, en la cual se ejecuta el Programa de medición del caudal de sedimentos suspendidos, evaluar los siguientes aspectos relacionados con la producción de sedimentos en la CHCP:

- 1.4.2.1 Identificar las subcuencas de la CHCP con mayores tasas de producción de sedimentos.
- 1.4.2.2 Establecer métodos indirectos para estimar las tasas de producción de sedimentos en subcuencas de la CHCP en donde no se han realizado mediciones.
- 1.4.2.3 Estimar los volúmenes de sedimentos que son transportados hacia los embalses.
- 1.4.2.4 Determinar las tasas de sedimentación promedio anual de los embalses.
- 1.4.2.5 Proyectar la capacidad de almacenamiento de agua de los embalses.

1.5 Definición de términos

Aforo (de caudales): medición del caudal de un río o corriente.

Área de drenaje: superficie/territorio que tiene una salida única para su escurrimiento superficial.

Batimetría: técnica que mide las profundidades del agua para determinar la topografía del fondo de cuerpos de agua. Actualmente las mediciones son realizadas por medio de un sistema de posicionamiento global (GPS) diferencial para determinar una posición exacta, y con una ecosonda mono o multihaz para determinar la profundidad exacta.

Caudal: volumen de agua que pasa a través de una sección transversal de un río por unidad de tiempo.

Caudal de sedimentos suspendidos o caudal sólido en suspensión (t/d, t/mes, t/año o MMC/d, MMC/mes, MMC/año): cantidad de sedimentos suspendidos medidos por peso seco o volumen que pasa por una sección del río en un intervalo de tiempo dado. Se expresa en toneladas (t) o millones de metros cúbicos (MMC) por día, mes o año, transformando el peso a volumen al dividirlo entre la densidad de los sedimentos.

Concentración de sedimentos suspendidos (mg/l): relación entre el peso de los materiales sólidos secos y el volumen de una muestra de agua y sedimentos. Se expresa en miligramos por litro.

Cuenca hidrográfica: superficie de la tierra en la que confluyen los distintos ríos y corrientes de agua en un río principal y que está limitada por un parte aguas o divisoria que coincide generalmente con la línea más alta de las montañas.

Cuenca Hidrográfica del Canal de Panamá (CHCP): área geográfica en la que confluyen los distintos ríos y corrientes de agua al Canal de Panamá.

Curva de descarga de sedimentos suspendidos: curva que relaciona los caudales sólidos suspendidos y líquidos: Qs = f(Q).

Curva de elevación – **área:** se construye a partir de la información topográfica. Indica la superficie inundada correspondiente a cada elevación.

Curva de elevación – capacidad: se obtiene mediante la integración de la curva de elevación – área. Indica el volumen de agua almacenado correspondiente a cada elevación.

Eficiencia de retención de un embalse: capacidad de un embalse de captar y retener sedimentos, expresada como el porcentaje de los aportes de sedimentos que ingresan y quedan retenidos en el mismo.

Elevación: distancia vertical entre un nivel, punto u objeto y una referencia específica.

Embalse: emplazamiento artificial usado para el almacenamiento, regulación y control de los recursos hídricos.

Escorrentía: lámina de agua distribuida uniformemente en el área de una cuenca o volumen de agua que pasa por una sección de un río o corriente durante un período de tiempo.

Estación hidrométrica: estación en la cual se obtienen datos del agua en los ríos, lagos o embalses, de uno o varios de los elementos siguientes: niveles, flujos de las corrientes, transporte y depósito de sedimentos, temperatura y otras propiedades físicas y químicas del agua.

Nivel del agua: distancia de la superficie del agua de una corriente, lago o embalse con relación a un nivel de referencia determinado.

Nivel de aguas máximas extraordinarias (NAME): elevación temporal que alcanza el embalse por encima del nivel máximo de operación durante crecidas de ríos.

Nivel de aguas máximas de operación (NAMO): elevación máxima a la cual la superficie del embalse subirá durante las condiciones normales de operación, definida por la elevación de la cresta del vertedero o por la parte superior de las compuertas del vertedero.

Nivel de aguas mínimas de operación (NAMINO): elevación mínima a la cual se opera el embalse en condiciones normales. Puede fijarse por la elevación más baja de la operación de las tomas de agua en la presa o, en el caso de generación de energía hidroeléctrica, tomando en cuenta las condiciones de eficiencia de operación para las turbinas.

Nivel de aguas mínimas (NAMIN): nivel mínimo de aguas del embalse definido por la elevación del desagüe más bajo en la presa que delimita superiormente el volumen muerto.

Producción anual de sedimentos suspendidos (t/año/km²): cantidad de sedimentos descargados por una cuenca en un periodo de un año y que puede entrar a un embalse localizado aguas abajo. Se expresa en toneladas por año por kilómetro cuadrado.

Rendimiento líquido o caudal específico (l/s/km²): caudal líquido de una cuenca por unidad de superficie expresado en litros por segundo por kilómetro cuadrado.

Sedimentos: material transportado por el agua desde su lugar de origen hasta un lugar de depósito. En los cursos de agua, son los materiales aluviales llevados en suspensión o como arrastre de fondo.

Tamaño hidrológico o relación de capacidad a caudal de entrada (C:I): relación entre la capacidad total de almacenamiento de un embalse y el caudal promedio anual que entra al embalse.

Vida útil: periodo de tiempo previsto durante el cual la explotación de un embalse será económica en función de la reducción de su capacidad de almacenamiento de agua debido a procesos de sedimentación.

Volumen activo o útil: volumen comprendido entre el nivel mínimo y máximo de operación de un embalse. Se aprovecha para los diferentes propósitos: energía, irrigación, producción de agua potable, navegación, etc.

Volumen inactivo: parte más baja de almacenamiento de agua del embalse que normalmente no es usada, delimitada por debajo del nivel mínimo de operación o elevación más baja de las tomas de agua.

Volumen de inundación o super-almacenamiento: porción superior de almacenamiento del embalse para el control de crecidas. Este volumen es evacuado rápidamente por medio del vertedero de demasías y no se aprovecha.

Volumen muerto o azolves: volumen localizado por debajo del nivel más bajo de una estructura de desagüe y el cual no puede ser descargado por gravedad. Está destinado para recibir el acarreo de sólidos durante la vida útil de la presa.

2 Revisión bibliográfica

2.1 Marco teórico

Los sedimentos son partículas sólidas o materiales fragmentarios inorgánicos resultantes de los procesos de erosión del suelo, del fondo y de las márgenes de los ríos y quebradas.

Las partículas de suelos son removidas constantemente de la superficie de la tierra, transportadas y depositadas por la escorrentía superficial hacia las zonas bajas de las cuencas como: la base de las pendientes de terrenos, depresiones y planicies de inundación. Finalmente, son transportadas por los ríos aguas abajo hasta que se depositan en cuerpos de agua como embalses, estuarios u océanos.

De acuerdo al modo de transporte en los ríos y quebradas los sedimentos se clasifican en: sedimentos suspendidos y sedimentos de fondo, cada uno con su propia instrumentación y metodología de medición y cálculo. Los sedimentos supendidos están constituidos principalmente por limos y arcillas y se refieren al material que está en suspensión en el flujo; mientras que los sedimentos de fondo son el material más grueso (arenas y gravas) que se mueve por rodamiento o deslizamiento cerca del fondo. Un método alternativo para determinar los sedimentos de fondo es estimarlos como un porcentaje de la carga de sedimentos suspendidos⁵.

La erosión de los suelos, el transporte de sedimentos por los ríos y, finalmente, la sedimentación de cuerpos de agua son procesos naturales que ocurren en una cuenca. Estos procesos se ven afectados por muchos factores ambientales interrelacionados, tales como: cantidad, distribución e intensidad de la precipitación; área y densidad del drenaje; características de los suelos; cobertura vegetal; pendiente del terreno y de los cauces, etc. Además, las tasas a las que ocurren estos procesos naturales en una cuenca se pueden incrementar hasta 100 veces y más debido a actividades humanas como: deforestación, agricultura, urbanización, construcción de caminos, etc.

Es de interés medir las tasas de transporte de sedimentos suspendidos de los ríos o caudales sólidos, para evaluar las tasas de sedimentación de cuerpos de agua y la producción de sedimentos, como resultado de la erosión de una cuenca; ya que esta información es útil en la toma de decisiones de medidas para el control de la erosión y conservación de los suelos. De forma tal de minimizar la acumulación de sedimentos y evitar la contaminación de los cuerpos de agua como embalses.

9

⁵ Erosion and Sedimentation Manual, Chapter 2 "Erosion and Reservoir Sedimentation". US Department of the Interior Bureau of Reclamation, November 2006.

La producción de sedimentos se refiere a la cantidad de sedimentos transportados hacia la salida de una cuenca por año y unidad de área. La producción de sedimentos de una cuenca puede ser calculada por medio de batimetrías en el caso de existir un embalse, o mediante la medición del transporte de sedimentos suspendidos en ríos (MSR). Ambos métodos tienen potencialmente importantes fuentes de error⁶.

Generalmente, las batimetrías representan una medida más confiable de la producción de sedimentos sobre periodos largos de tiempo, ya que así se minimizan los errores al determinar los cambios en el espesor de los sedimentos acumulados entre batimetrías. Adicionalmente, permiten conocer donde se depositan los sedimentos. Una desventaja de este método es no poder proveer información de las variaciones a corto plazo ni de las variaciones espaciales de la producción de sedimentos de las cuencas. Esta información es importante para enfatizar los esfuerzos de control de erosión sobre aquellas cuencas que descargan la mayor parte de los sedimentos hacia los embalses u otros cuerpos de agua.

Por otra parte, la medición del transporte de sedimentos suspendidos en ríos requiere de programas de monitoreo continuo durante un largo periodo de tiempo, así como de mediciones durante las crecidas de los ríos, de las cuales se obtienen pocos datos debido a su baja probabilidad de ocurrencia durante las giras de campo. Por lo general, la relación entre el caudal de sedimentos suspendidos y el caudal líquido o curva de descarga de sedimentos, utilizada para calcular la producción de sedimentos, presenta una considerable dispersión. El caudal de sedimentos suspendidos puede variar hasta en más de tres órdenes de magnitud para un mismo caudal líquido dado.

En consecuencia, la medición del transporte de sedimentos en ríos y las batimetrías son métodos que se complementan entre sí para estimar las tasas de producción de sedimentos en las cuencas, las tasas de sedimentación y las pérdidas en la capacidad de almacenamiento de agua de los embalses.

2.2 Estudios previos

Los estudios previos sobre producción de sedimentos y sedimentación de embalses en la CHCP, se han enfocado en la subcuenca del embalse Alhajuela. Estos estudios consideran que la capacidad original de almacenamiento de agua del embalse a 76.81 m (252 pies) era de 799.5 MMC, a excepción del de 1997 que considera una capacidad inicial de 787.2 MMC, según cálculos de ese entonces.

2.2.1 Kellog, H.F., 1931

A partir de las mediciones de sedimentos suspendidos en el río Chagres en Alhajuela, entre septiembre de 1929 y febrero de 1931, estimó un caudal sólido en suspensión de 0.056 MMC/año equivalente a 63.4 t/año/km².

⁶ Reservoir Sedimentation Handbook: design and management of dams, reservoir, and watersheds for sustainable use, Chapter 7, Morris, Gregory L., McGraw-Hill, 1997.

Para convertir de peso a volumen aplicó una densidad promedio de sedimentos de 1.113 t/m³ (69.5 lbs/pie³) obtenida a partir de dos pruebas de campo. Consideró que este caudal sólido estimado constituiría el aporte de sedimentos que se depositarían al futuro embalse del lago Alhajuela (Cuadro C.1 y Gráfica C.1).

Basándose en esta tasa de sedimentación, proyectó que el tiempo requerido para que los sedimentos se acumulen hasta una elevación de 45.72 m (150 pies) si se distribuyeran uniformemente es de 350 años. Bajo estas condiciones, el volumen de sedimentos acumulados en los 350 años representaría una pérdida de sólo 2.5% en la capacidad original de almacenamiento de agua del embalse Alhajuela (Cuadro C.7).

Las proyecciones de Kellog están basadas en un solo año de registro (1930) y a una tasa de sedimentación muy baja, la cual es el resultado de mediciones realizadas durante uno de los diez años más secos del periodo 1914-2007 (-24.6% por debajo del caudal promedio anual de entrada al embalse Alhajuela, Gráfica B.1). Para el año 1997, el más seco del registro de la CHCP, a partir de datos publicados por la antigua Panama Canal Commission (PCC), se estimó una producción de sedimentos suspendidos para la subcuenca del embalse Alhajuela de 73.4 t/año/km², la cual es similar a la reportada en este estudio.

2.2.2 Wadsworth, F.H., 1978

Estableció que la deforestación ha causado que la sedimentación del embalse Alhajuela dé como resultado una pérdida de más del 5% en la capacidad de almacenamiento del volumen útil y que de mantenerse las tendencias de uso de la tierra para ese entonces, tendría como resultado una pérdida del 40% en la capacidad total original de almacenamiento de agua para el año 2000 (Anexo C).

2.2.3 Larson, C.L., 1979

Aseveró que la deforestación de bosques nativos para cultivos y pastizales está acelerando la erosión de los suelos y la sedimentación del embalse Alhajuela. Basándose en batimetrías de 1957 y de los años setenta, determinó las tasas de sedimentación para dos periodos: (1) predesarrollo de 1934 a 1973 y (2) uso actual de la tierra entre 1973 y 1978. Para el primer periodo no hubo una deforestación significativa, por lo que estimó una tasa de sedimentación de 0.937 MMC/año; mientras que para el segundo periodo con una deforestación del 18% del área de aportación de la subcuenca del embalse Alhajuela (176 km²), estimó una tasa de sedimentación de 2.595 MMC/año (Cuadros C.3 y C.7).

Según estas tasas de sedimentación determinó para el periodo 1934-1978 un volumen de sedimentos acumulados de 46.9 MMC con una pérdida de 5.9% en la capacidad total de almacenamiento. Sin embargo, las proyecciones de pérdida en la capacidad de almacenamiento de agua las estimó en 22.6% para el periodo 1978-2000, en 46.4% para el 2000-2020 y en 81.3% para el 2020-2040.

Estas proyecciones las hizo asumiendo que las áreas deforestadas continuarían aumentando (suposición antes de la creación del Parque Nacional Chagres en 1984) y consecuentemente que la producción de sedimentos seguiría incrementándose conforme aumentara la deforestación (Cuadros C.3 y C.7).

En estas condiciones se infiere que la producción de sedimentos que ocurriría en la subcuenca del embalse Alhajuela en años posteriores sería similar a los sitios con mayor valor en el mundo, como en el caso de Taiwan; en donde se reportan tasas promedio de 13760 t/año/km². Estas tasas están influenciadas por condiciones naturales como erupciones volcánicas y terremotos, y por actividades humanas como la agricultura y la explotación forestal⁷.

2.2.4 Alvarado, Luis A., 1985

En este informe, las tasas de sedimentación se basaron en el volumen de sedimentos acumulados por debajo de la elevación de 71.63 m (235 pies), elevación a la cual se realizó la batimetría del embalse Alhajuela en 1983. Se determinó que en cuarenta y nueve años (1934-1983) había ingresado al embalse un volumen de sedimentos de 37.9 MMC, lo que representa una tasa de sedimentación de 0.774 MMC/año y una pérdida en la capacidad total de almacenamiento de agua de 4.7% (Cuadros C.4 y C.7).

Al igual que Larson, las proyecciones de pérdida en la capacidad de almacenamiento de agua también se basaron en tasas de sedimentación que se incrementan conforme aumenta la deforestación. En este caso, con un incremento constante de 0.06 MMC/año proporcional a una tasa de deforestación de 8.1 km² por año. Bajo esta consideración, Alvarado estimó que para los periodos 1983-1990, 1990-2000, 2000-2010 y 2010-2020, las pérdidas en la capacidad de almacenamiento de agua serían de 6.5%, 9.7%, 13.7% y 18.4% respectivamente (Cuadro C.7).

Para que estas proyecciones de pérdida en la capacidad de almacenamiento de agua ocurran, se infirieron tasas de producción de sedimentos en la subcuenca del embalse Alhajuela entre 2307 y 4478 t/año/km², las cuales todavía son excesivas al compararse con las obtenidas en el PMCSS para los periodos 1984-1997 y 1998-2007. De los datos publicados por PCC para el periodo 1984-1997, se estimó una producción de sedimentos suspendidos de 352 t/año/km² y para el periodo 1998-2007, de 544 t/año/km² según datos de la ACP (Cuadros I.5 e I.6).

12

⁷ Reservoir Sedimentation Handbook: design and management of dams, reservoirs, and watersheds for sustainable use, Morris, Gregory L., McGraw-Hill, 1997.

2.2.5 Tutzauer, Jack R., 1990

El estudio tomó como base la información de la batimetría de 1983 y del PMCSS en los ríos Chagres, Pequení y Boquerón para el periodo 1981-1986.

A partir de los resultados de la batimetria de 1983, Tutzauer realizó un ajuste para estimar el volumen de sedimentos depositados y no medidos entre las elevaciones de 71.63 m a 76.81 m (235 a 252 pies), el cual no fue considerado en el informe de Alvarado. Asumió que la relación entre el volumen de sedimentos depositados y el área del embalse, estimados en 16.5 MMC (584 MCF) y 20.7 km² (8 mi²) respectivamente, que corresponde a las elevaciones entre 59.44 m y 71.63 m (195 y 235 pies), es la misma que para el rango de elevaciones de 71.63 m a 76.81 m (235 a 252 pies) (Cuadro C.5).

Aplicando el resultado de la relación establecida: 0.796 MMC/km² (73.0 MCF/mi²), estimó que a la elevación de 252 pies el volumen de sedimentos acumulados durante el periodo 1933-1983 fue de 44.5 MMC, equivalente a una tasa de sedimentación de 0.890 MMC/año y a una pérdida en la capacidad de almacenamiento de agua del 5.6%.

Por otra parte, de los resultados del PMCSS para el periodo 1981-1986, Tutzauer definió un modelo de regresión lineal entre el volumen de sedimentos suspendidos transportado por los tres ríos principales y la lluvia promedio en la subcuenca del embalse Alhajuela para ese mismo periodo:

$$Ss = 296.66 \text{ Rm}^2 - 50516.23 \text{ Rm} + 2283608$$

En donde:

Ss = caudal de sedimentos suspendidos estimado para los tres ríos principales en toneladas por año (t/año).

Rm = Iluvia promedio anual en la subcuenca del embalse Alhajuela en pulgadas.

A partir de esta regresión, estimó que el volumen total de sedimentos suspendidos transportado por estos ríos durante el periodo 1933-1986 fue de 20.8 MMC. Este volumen de sedimentos en suspensión fue ajustado asumiendo un 15% por acarreo de sedimentos de fondo, una eficiencia de retención de embalse de 99% y un factor de 1.55 por la relación del área total de aportes de sedimentos entre el área de aportes medidos de la subcuenca del embalse Alhajuela.

De esta manera, Tutzauer estimó que el volumen de sedimentos depositados en el embalse Alhajuela fue de 37.6 MMC (1933-1986), 15% menor al estimado por medio de la batimetría.

Finalmente, realizó una nueva estimación del volumen de sedimentos acumulados para el periodo 1933-1986 a partir de las mediciones de sedimentos supendidos en los ríos.

Para ello consideró un factor de ajuste⁸ entre el volumen de sedimentos estimado por la batimetría y el transportado por los tres ríos y lo aplicó al modelo de regresión. En esta ocasión obtuvo que el volumen de sedimentos depositados fue de 46.0 MMC (Cuadro C.6).

Con el modelo de regresión lineal del caudal de sedimentos ajustado a los resultados de la batimetría, Tutzauer hizo proyecciones hasta el año 1999. Asumió que la lluvia promedio en la subcuenca del embalse Alhajuela durante el periodo 1933-1986 se mantendría para el periodo 1986-1999. Fue así como determinó un volumen de sedimentos acumulados hasta 1999 de 55.0 MMC y una pérdida del 6.9% en la capacidad original de almacenamiento de agua (Cuadros C.6 y C.7).

2.2.6 Madden reservoir storage capacity loss, División de Ingeniería, 1997

En el memorandum del 17 de diciembre de 1997, de la División de Ingeniería (PCC), se evaluó la pérdida en la capacidad de almacenamiento de agua del embalse Alhajuela. Para tal fin, se generaron modelos de elevación digital basados en la topografia original de 1928, la batimetría de 1983 y la de 1997. El informe presenta los resultados de los volúmenes disponibles de almacenamiento de agua para cada año con información topográfica y/o batimétrica y para diferentes elevaciones de referencia: 252, 205, 200 y 190 pies (Gráfica C.3 y Cuadro C.7).

De acuerdo con estos resultados, tomando como referencia la elevación de 252 pies (76.81 m), se han depositado en el embalse 118.6 MMC de sedimentos durante el periodo 1935-1997 a una tasa promedio de sedimentación de 1.883 MMC/año, lo que representa una pérdida en la capacidad total de almacenamiento de agua de 14.8%.

Igualmente, se infiere que solo 23.7 MMC se han depositado por debajo de la elevación de 190 pies (nivel mínimo de operación), es decir, el 80% de los sedimentos se está depositando en el volumen útil del embalse. Además, indican que para el periodo de 1984-1997 la tasa de sedimentación se está incrementando con respecto al periodo 1935-1983.

Según este informe de 1997, para el periodo 1984-1997 se depositaron en el embalse Alhajuela 31.8 MMC con una tasa de produción de sedimentos inferida en 2678 t/año/km². Esta tasa es ocho veces mayor a la estimada en 352 t/año/km² en el PMCSS durante el mismo periodo según datos de la PCC (Cuadro I.5).

Los resultados sobre los volúmenes de sedimentos depositados obtenidos a partir de las batimetrías realizadas hasta 1983, estimados por Larson en 44.5 MMC (1934-1978) y Tutzauer en 46.9 MMC (1933-1983) muestran mayor similitud entre sí. Para las correspondientes pérdidas en la capacidad de almacenamiento de agua obtienen valores de 5.6% y 5.9%, respectivamente.

-

⁸ (Factor de ajuste = 44.5 MMC/ 20.8 MMC = 2.13)

Sin embargo, los resultados del informe de 1997 muestran que se ha depositado casi el doble del volumen de sedimentos (86.8 MMC) durante el periodo similar de 1935-1983, con una pérdida en la capacidad de almacenamiento de agua del 10.9%.

El Cuadro C.7 recopila los resultados de los principales estudios y evaluaciones sobre la sedimentación del embalse Alhajuela. Contiene las tasas de sedimentación estimadas y proyectadas por los diferentes autores; así como, la producción de sedimentos inferida en el presente informe.

Los resultados y sus diferencias sobre las tasas de sedimentación -obtenidas a partir de la información de las batimetrías- en los estudios citados, han estado sujetos a los recursos técnicos diponibles del momento; respecto al equipo utilizado en campo, a las capacidades para el procesamiento y edición de los datos hidrográficos y además, a las limitaciones de la información.

En 2008, los planos de la topografía de 1928 fueron escaneados y digitalizados por la sección de Topografía, Hidrografía y Cartografía para elaborar un modelo de elevación digital hasta la elevación de 79.25 m (260 pies). A partir de éste modelo realizaron una corrección de los datos históricos al comparar las secciones de las batimetrías de 2008, 1997 y 1983 con las originales de 1928 (Gráfica I.4).

3 Metodología

3.1 Características físicas de las subcuencas

Algunas de las características físicas que influyen en la producción de sedimentos tales como el área de drenaje, la cobertura vegetal y los rangos de pendientes se definieron hasta los sitios de medición localizados en la sección de aforo de las siete estaciones hidrométricas analizadas (Cuadros D.1, D.2, D.3 y Anexo A).

El área de drenaje medida hasta la sección de aforo de las subcuencas tributarias al embalse Alhajuela: ríos Chagres, Pequení y Boquerón representa el 66% (640 km²) del área total de aportes de sedimentos. La pendiente media de estas subcuencas con control hidrometrico varía entre 47% y 56% y en el relieve predominan las pendientes pronunciadas a muy pronunciadas que cubren entre 55% y 70% de sus áreas de drenaje. La cobertura boscosa es el tipo de vegetación dominante, como es el caso de las subcuencas de los ríos Chagres y Pequení en donde ocupa el 98% de sus áreas drenadas. La precipitación media en la subcuenca del embalse Alhajuela fue estimada en 3183 mm para el periodo 1974-1998 (Cuadro D.4).

Para el embalse Gatún el área de drenaje medida hasta la sección de aforo de las subcuencas tributarias: ríos Cirí Grande, Trinidad, Gatún y Caño Qubredo representa el 29% (544 km²) del área total de aportes de sedimentos. En estas subcuencas la pendiente media varía entre 10% y 40% y presenta un relieve con pendientes suaves a moderadas que cubren entre 46% y 97% de sus áreas de drenaje. En el sector oeste la cobertura vegetal principal son los pastizales y cubren entre 47% y 73% del área de drenaje de las subcuencas de los ríos Ciri Grande, Trinidad y Caño Quebrado. La precipitación media en la subcuenca del embalse Gatún fue estimada en 2334 mm para el periodo 1974-1998 (Cuadro D.4).

Aunque la cobertura boscosa predomina en un alto porcentaje en la subcuenca del embalse Alhajuela, las características de pendiente del terreno y régimen de lluvias son más críticas para la producción de sedimentos que en la subcuenca del embalse Gatún.

3.2 Recopilación de información

Para los años de 1981 a 1986 no se encontraron detalles de los resultados de los muestreos y solo los resúmenes totales anuales de los caudales de sedimentos suspendidos publicados por la PCC de la subcuenca del embalse Alhajuela. Para el periodo 1987-1994, la información histórica de los muestreos de sedimentos suspendidos, realizados por los Técnicos Hidrólogos (TH) y Observadores Particulares (OP), fue recopilada a partir de archivos impresos en papel y archivos digitales en formato de hojas de cálculo Supercalc que fueron exportadas a formato Excel. En éste formato también se recopiló la información del periodo 1995-1999.

Estos archivos contienen la siguiente información sobre los muestreos realizados: nombre del río, estación hidrométrica, fecha y hora de muestreo, elevación del río, colector y resultados de la concentración de sedimentos suspendidos en mg/l (Cuadro E.1).

En el año 2000 se realizó una revisión de las metodologías de muestreo de campo, protocolo de análisis de laboratorio y procesamiento de datos con el objetivo de hacer ajustes en las metodologias y mejorar el control de calidad de los datos del programa (Referencia 6.6).

Con la información recopilada de los muestreos de campo se conformaron dos registros cronológicos por estación hidrométrica para el periodo 1987-2007, uno para TH y otro para OP, que incluyen la siguiente información: número de muestreo, fecha, hora, concentración promedio, elevación del río, caudal líquido y de sedimentos suspendidos instantáneos. Estos datos constituyen la información básica para elaborar las curvas de caudal de sedimentos suspendidos (ejemplo para la estación El Chorro en los Cuadros E.2 y E.3).

3.3 Muestreos de campo

Las muestras de sedimentos suspendidos son tomadas en campo con muestreadores integradores en profundidad, que son equipos diseñados hidrodinámicamente y estandarizados por agencias de los Estados Unidos, en los que se inserta una botella de vidrio con capacidad de 500 ml. Estas botellas van conectadas a un conducto que permite la salida de aire a medida que el agua entra a la botella por medio de una boquilla. La boquilla a su vez controla la velocidad de entrada del agua de manera que sea aproximadamente igual a la velocidad del flujo local de la corriente. Esta característica es importante para que la muestra sea representativa del volumen de sedimentos transportados por la corriente.

Desde que inició el PMCSS en 1980, se utilizan los siguientes modelos de muestreadores de sedimentos suspendidos: US DH-48, US DH-59 y US D-74. El US DH-48 se aplica cuando el río tiene profundidades menores a 1.0 m (3.0 pies) y el muestreo se realiza por vadeo. El US DH-59 es usado desde el cable vía cuando las profundidades en el río no permiten recolectar las muestras por vadeo y el US D-74 es utilizado para tomar muestras durante crecidas. Cada uno de estos muestreadores cuenta con boquillas de 1/8, 3/16 y 1/4 de pulgada, dependiendo de la velocidad del río.

Al inicio del programa los OP tomaban por lo general una muestra diaria y una cada hora durante crecidas. Los TH tomaban las muestras de sedimentos suspendidos mensualmente y durante periodos de crecidas. Actualmente la cantidad de muestreos para los TH y los OP es de una al mes y hasta tres muestreos durante crecidas: de subida, bajada y de ser posible al momento del máximo de las crecida.

La metodología de muestreo de los TH está basada en la selección de verticales de la sección de aforo que representan incrementos iguales de caudal o descarga (EDI por sus siglas en inglés). El procedimiento en campo es el siguiente:

- Se anota la elevación del río.
- Se realiza el aforo para determinar las cuatro verticales (EDI) que corresponden a incrementos iguales al 25% del caudal total de la sección, o se utilizan las gráficas que relacionan las EDI con la elevación del río (Gráfica E.1), dependiendo de la prontitud con que cambie el caudal.
- Se selecciona el tipo de muestreador de sedimentos, se elige el tamaño de la boquilla y se determina el tiempo de descenso y ascenso del muestreador de acuerdo a la gráfica de tiempo de llenado de botellas.
- En cada vertical de muestreo se orienta el muestreador con la boquilla frente a la corriente y desde la superficie se baja hasta el fondo y se sube a un ritmo constante.
- Para que cada muestra sea representativa y validada debe tener un volumen entre 300 ml y 400 ml.
- Al finalizar la toma de las muestras se anota nuevamente la elevación del río.

Para el periodo 1987-2007 se procesaron 26183 muestras tomadas por los OP en las seis estaciones principales, las cuales fueron distribuidas de la siguiente manera: 3561 en Chico, 4240 en Candelaria, 4517 en Peluca, 5240 en Ciento, 3835 en El Chorro y 4694 en Los Cañones. Para los TH se procesaron 868 muestreos: 142 en Chico, 142 en Candelaria, 81 en Peluca, 169 en Ciento, 173 en El Chorro y 121 en Los Cañones (Cuadro E.4).

En la estación Caño Quebrado, que inció operaciones en el año 2003, el OP ha tomado 96 muestras y los TH han realizado 40 muestreos.

Con excepción de la estación Los Cañones, en cada estación monitoreada los TH han realizado menos de 5 muestreos en condiciones de caudales altos, lo que representa un porcentaje inferior al 3% del total de los muestreos de los TH. Los OP han recolectado entre 86 y 895 muestras en condiciones de caudales altos durante el periodo 1987-2007, lo que representa entre 2% y 20% del total recolectado.

3.4 Análisis de laboratorio

El método de laboratorio utilizado por la Unidad de Calidad de Agua para la determinación de la concentración de sedimentos suspendidos en el Programa de medición del caudal de sedimentos suspendidos es el establecido por el "Standard Methods", edición 21: SM 2540-D.

El método SM 2540-D consiste en filtrar una muestra de agua a través de un filtro de fibra de vidrio con poros de 1 micrómetro (μ m) de tamaño, previamente pesada y luego secada en un horno a una temperatura entre 103°C y 105°C hasta obtener un peso constante del filtro más el sedimento retenido.

3.5 Procesamiento de datos

El procesamiento de datos para obtener la producción de sedimentos y las tasas de sedimentación, a partir de mediciones en los ríos del periodo 1998-2007, está basado en la aplicación de curvas de descarga de sedimentos suspendidos. Esto difiere del periodo 1981-1997, en el cual se elaboraban gráficamente curvas continuas de concentración de sedimentos en suspensión, tomando como base la variación de los niveles de los ríos en el tiempo. Este cambio de metodología permite disminuir errores en el procesamiento de los datos debido a interpretaciones personales.

A partir de las curvas de concentración continuas calculaban las concentraciones promedios diarias de sedimentos suspendidos. Con estas concentraciones y caudales líquidos promedios diarios se calculaban los caudales sólidos en suspensión.

Adicionalmente, para el periodo 1998-2007 se hizo una revisión y corrección de los niveles registrados a partir de las lecturas de mira de los OP y TH. Se revisaron, en función de los niveles, las caracteristicas geométricas e hidráulicas de los aforos y a partir de éstos se trazaron, con una sola extrapolación en su parte alta, las curvas de descarga. De esta forma se determinaron las ecuaciones de las curvas de descarga de caudales líquidos del tipo $Q = c (H-ho)^n$ en las siete estaciones hidrométricas. Para los años previos al periodo 1998-2007, las curvas de descarga no convergen a una sola en el régimen de caudales altos.

Para el trazado y determinación de las ecuaciones de las curvas de descarga de sedimentos suspendidos, de cada muestreo realizado por los TH y los OP, se conformó la información básica de caudales líquidos y sólidos instantáneos del periodo 1987-2007, en cada estación hidrométrica.

El caudal líquido instantáneo se obtuvo tomando como base la fecha y hora de cada muestreo de sedimentos para determinar la elevación del río y a partir de la curva de descarga vigente determinarlo para cada muestreo de TH y OP (Cuadros E.2 y E.3).

La concentración promedio, en el caso de las muestras tomadas por el TH, se calcula a partir de las concentraciones obtenidas en las cuatro verticales EDI de la sección transversal.

En el caso de los OP, la concentración promedio de la sección se determina ajustando la concentración de la muestra tomada en una sola vertical por medio de una regresión lineal entre ambos datos. Finalmente, el caudal sólido instantáneo se obtiene aplicando la siguiente ecuación (Cuadros E.2 y E.3):

$$Qs = k * Css * Q$$
 (Ec.1)

Donde:

Qs: Caudal sólido instantáneo en toneladas por día (t/d).

k : Coeficiente igual a 0.0864 para el sistema internacional.

Css: Concentración promedio de sedimentos suspendidos en miligramos por litro (mg/l).

Q: Caudal instantáneo en metros cúbicos por segundo (m³/s).

La curva de descarga de sedimentos se elabora graficando los datos de los caudales sólidos en función de los caudales líquidos, en una gráfica doble logarítmica (log-log), a los que se ajusta una ecuación lineal:

$$\ln(Qs) = \ln(a) + b\ln(Q)$$

En forma algebraica, esta ecuación corresponde al tipo potencial:

$$Qs = a * Q^b$$

Donde:

Qs: Caudal sólido instantáneo en toneladas por día (t/d).

a: Coeficiente considerado como indicador de la erodabilidad.

Q: Caudal instantáneo en metros cúbicos por segundo (m³/s).

b: Exponente que representa la pendiente de la curva de descarga de sedimentos.

En esta ecuación, si la pendiente b se mantiene constante y se varía el coeficiente a, se definen diferentes líneas (aunque todas parelelas entre sí) con los valores más altos del coeficiente a, indicando mayores concentraciones de sedimentos suspendidos para un mismo caudal líquido.

La pendiente de la curva de descarga de sedimentos también suministra información sobre los procesos de transporte de sedimentos en una cuenca. Los cambios en la pendiente reflejan cambios en la concentración de sedimentos.

Cuando la pendiente de la curva de descarga de sedimentos es igual a uno, la concentración de sedimentos es constante para cualquier caudal líquido, mientras que valores de la pendiente mayores a uno indican incrementos en las concentraciones de sedimentos suspendidos, los cuales son mayores a medida que el valor del exponente b crece.

Las curvas de descarga de sedimentos suspendidos para los ríos de la CHCP fueron elaboradas utilizando el método de ajuste visual. Este método permite trazar segmentos rectos según sean las tendencias de los caudales sólidos con respecto a los caudales líquidos.

Para el trazado visual de estas curvas se dio mayor peso a los datos de los TH y, en los caudales altos, por la escasez de información de los TH, el trazado se hizo en base a los datos de los OP. Para evaluar la calidad del ajuste de las curvas de descarga de sedimentos se determino el error estandar en porcentaje (el cual indica el grado de dispersión de los datos) y el porcentaje de error entre la sumatoria de los caudales sólidos medidos y calculados (el cual indica el trazado promedio de la curva para mentenerse dentro del rango de error de +/-30%).

A partir de las ecuaciones de las curvas de descarga de sedimentos suspendidos determinadas se procesaron los caudales sólidos en función de los caudales líquidos calculados cada quince minutos. De los caudales sólidos cada quince minutos se obtivieron los caudales sólidos promedios diarios, mensuales y anuales, así como la producción anual de sedimentos suspendidos.

El aporte anual de sedimentos de fondo se estimó como un porcentaje del caudal sólido en suspensión, típicamente entre 2% y 15%. El método de Strand and Pemberton (1982) presenta una guía para estimar el porcentaje del caudal sólido de fondo respecto al de suspensión en función del tamaño del material de fondo, porcentaje de arena en el análisis granulométrico del material en suspensión y de la concentración de sedimentos suspendidos durante crecidas.

De la suma del caudal sólido en suspensión y del caudal sólido de fondo se obtiene el caudal sólido total al cual se aplica el porcentaje de eficiencia de retención del embalse. Los embalses con alta eficiencia de retención vierten menor cantidad de agua y consecuentemente retienen la mayor descarga de sedimentos entrantes. Aplicando el método de Brune (1953) se obtiene la eficiencia de retención de embalse para los embalses Alhajuela y Gatún:

Capacidad del Lago Alhajuela (C) a nivel maximo de operación de 252 pies en MMC:	681.5	
Caudal Promedio Anual de Entrada (I), 77.0 m3/s (1998-2007) en MMC:		
Relación C/I:	0.28	
Eficiencia de retención de embalse:	96.6%	
Canacidad dal Laga Catún (C) a nivel mayima da anarasián da 97 5 nice an MMC	5470	
Capacidad del Lago Gatún (C) a nivel maximo de operación de 87.5 pies en MMC:		
Caudal Promedio Anual de Entrada (I), 86.6 m ³ /s (1998-2007) en MMC:		
Relación C/I:	2.00	
Eficiencia de retención de embalse:	100%	

Finalmente, para determinar el volumen de sedimentos depositado en MMC y la tasa de sedimentación en MMC/año se consideró una densidad de sedimentos de 1.113 t/m³, basada en los resultados del estudio de Kellog.

Para obtener las tasas de sedimentación y producción de sedimentos a partir de las batimetrías, en este caso del embalse Alhajuela, se determinó el volumen de sedimentos depositado en el embalse a partir de las curvas elevaciones-capacidades (Gráfica I.3) obtenidas de cada batimetría con los datos históricos corregidos en 2008.

El volumen de sedimentos depositado se dividió entre el tiempo transcurrido entre cada batimetría para obtener la tasa de sedimentación en MMC/año. Esta tasa se divide entre la eficiencia de retención de embalse promedio del mismo periodo entre batimetrías y se multiplica por la densidad de sedimentos para obtener la tasa de flujo de sedimentos o caudal sólido que ingresa al embalse. La producción de sedimentos se obtiene al dividir el caudal sólido entre el área de aportes que contribuye con sedimentos (área de drenaje de la cuenca menos superficie del embalse).

4 Resultados

4.1 Curvas de descarga de sedimentos suspendidos

Los resultados y resumen de la ecuaciones obtenidas de la curvas de descarga de sedimentos se muestran en el Cuadro F.1 y en las Gráficas F.1 a F.8.

Las curvas de sedimentos con menor grado de dispersión y porcentaje de error resultaron en la estación Caño Quebrado y Los Cañones. En la estación Caño Quebrado el error estandar determinado fue de 47% y el porcentaje de error de 2.1%, mientras que en la estacion Los Cañones el error estandar fue de 58% y el porcentaje de error de 4.1%. En ese orden continuaron la estación Chico con error estandar de 67% y porcentaje de error de 8.7% y la estación Peluca con error estandar de 76% y porcentaje de error de 13.2%. Las curvas de sedimentos con mayor grado de dispersión resultaron en la estación el Chorro con error estandar de 87% y porcentaje de error de 19.8%, la estación Ciento con error estandar de 90% y porcentaje de error de 8.9% y la estación Candelaria con error estandar de 90% y porcentaje de error de 13.4%.

Con respecto a los coeficientes de las curvas de descarga de sedimentos, para caudales menores a 70 m³/s, el coeficiente a resultó con mayor valor en la estación Caño Quebrado (1.2802) y de menor valor en la estación Chico (0.000167). En general, los ríos que descargan en el embalse Gatún presentaron mayores valores del coeficiente a, indicando más altas concentraciones de sedimentos suspendidos para un mismo caudal. A excepción de la estación Chico, las curvas de sedimentos se hacen mas homogenas para caudales entre 80 m³/s y 1000 m³/s , con variaciones de concentración entre 500 mg/l y 900 mg/l y entre 1400 mg/l y 2700 mg/l, respectivamente. Sin embargo, la estación Chico en caudales altos es la que muestra mayor incremento en la variación de concentraciones con un coeficiente b de 2.2183 y la estación El Chorro la de menor valor, con un coeficiente b de 1.3324.

En el año 2007 se observó una tendencia de aumentar los caudales sólidos con relación a un mismo caudal líquido en todas las estaciones, excepto en Caño Quebrado y Peluca. Por tal razón, se definieron nuevas curvas de descargas de sedimentos (Cuadro F.2). En el caso de la estación Chico, por medio de un sobrevuelo a la subcuenca del río Chagres se pudo documentar la ocurrencia de deslizamientos de tierra (Fotos, Anexo I).

4.2 Caudal y producción de sedimentos suspendidos en subcuencas sin control hidrométrico

En el área no medida de unos diez afluentes menores (sin control hidrométrico), en la subcuenca del embalse Alhajuela, entre las estaciones hidrométricas y el sitio de la represa, es de 336 km², es decir 34% del área de aportación de sedimentos; mientras que en la subcuenca del embalse Gatún es de 1334 km² ó 71% del área de aportación, correspondiente a unos treinta afluentes menores.

La producción y el caudal de sedimentos suspendidos fueron determinados en las áreas no medidas, en base a una regresión lineal simple entre el valor promedio del caudal especifíco y la producción de sedimentos suspendidos de las 7 estaciones hidrométricas, para el periodo 1998-2007 (Cuadro I.1). En el caso de la estación Caño Quebrado el valor promedio de ambas variables fue normalizado al periodo de análisis. Se obtuvo un coeficiente de determinación (r²) de 0.9557 y la ecuación resultante es la siguiente (Gráfica I.1):

$$qs = 9.1471 \quad q - 184.7538 \quad (Ec. 2)$$

donde:

qs: producción promedio de sedimentos suspendidos en t/año/km² q: caudal específico promedio en l/s/km².

El caudal específico para las áreas no medidas en las subcuencas de los embalses Alhajuela y Gatún se obtuvo por diferencia entre los caudales promedios anuales de entrada, resultantes de los balances hídricos de ambos embalses y los caudales promedios anuales medidos en las estaciones hidrométricas (Gráficas B.1 y B.2 y Cuadros I.2 e I.3).

Con el caudal específico determinado en las áreas no medidas, tanto para sus valores anuales como para el valor promedio del periodo analizado (1998-2007), se aplicó la Ec. 2 (Cuadros I.2, I.3 e I.6). La Ec.2 determinada entre los valores anuales de la producción de sedimentos suspendidos y el caudal específico tiene mayor dispersión que al considerar los valores promedios del periodo. Esto se debe a que los caudales anuales de sedimentos suspendidos, calculados por medio de las curvas de descarga de sedimentos, están principalmente influenciados por la magnitud de las crecidas. Sin embargo, el valor promedio de la producción de sedimentos suspendidos estimado por medio de la Ec. 2, en cada estación hidrométrica, tiene un porcentaje bajo de error respecto al valor promedio obtenido de mediciones, lo que sugiere su aplicación para periodos largos.

De esta forma se estimó en el área no medida de la subcuenca del embalse Alhajuela un caudal promedio de sedimentos suspendidos de 140544 t/año, el cual representa 26.5% de los aportes al embalse. La producción promedio de sedimentos suspendidos se estimó en 418 t/año/km² (Cuadro I.2).

En el área no medida del embalse Gatún, el caudal promedio de sedimentos suspendidos estimado es de 321176 t/año y representa 72.8% de los aportes al embalse. La producción promedio de sedimentos suspendidos fue estimada en 229 t/año/km² (Cuadro I.3).

4.3 Caudal y producción de sedimentos suspendidos en subcuencas con control hidrométrico

En el periodo 1998-2007, incluyendo las subcuencas sin control hidrometrico, las subcuencas que descargan en el embalse Alhajuela aportaron mayor caudal de sedimentos suspendidos que las del embalse Gatún, en promedio 531095 t/año versus 441133 t/año, respectivamente (Cuadros I.2, I.3 e I.6).

La subcuenca del río Chagres aportó 44.1% de la descarga al embalse Alhajuela en promedio 234424 t/año; la del río Pequení 18.5% de los aportes en promedio 98098 t/año y la del río Boquerón 10.9% de los aportes en promedio 58030 t/año. Los aportes promedios de caudales de sedimentos suspendidos para las subcuencas con control hidrométrico que descargan en el embalse Gatún en este periodo fueron: 41045 t/año la del río Gatún, 39974 la del río Trinidad y 38938 la del río Cirí Grande, en su conjunto aportaron el 27.2% del total descargado a el embalse (Cuadros I.2 e I.3).

Por lo general, el análisis de los caudales diarios de sedimentos suspendidos por medio de las curvas de duración muestran que existe una alta variabilidad temporal. Durante la crecida del río Chagres del 28 al 31 de diciembre de 2000 se estimó que se transportaron 271878 toneladas de sedimentos en suspensión (Gráfica G.2), lo que representa 79% del caudal de sedimentos suspendidos del año 2000.

De hecho, una crecida extraordinaria como la ocurrida en ese entonces, con caudal máximo instántaneo de 1971 m³/s (69614 pie³/s), puede arrastar en pocos días tantos o más sedimentos como los que ocurren en todo un año de escorrentía normal. Resultados similares para el resto de las subcuencas con control hidrométrico se muestran en la Gráfica G.1 y el Cuadro G.1. En este cuadro se observa que en las subcuencas que descargaron en el embalse Alhajuela durante el periodo 1998-2007, los caudales de sedimentos suspendidos transportados el 1% del tiempo (3.6 días al año) representaron entre el 61% y 72% del total anual.

En las subcuencas que descargan en el embalse Gatún los porcentajes varían entre 23% y 48% para los caudales de sedimentos suspendidos transportados en 3.6 días al año. Casi la totalidad de los caudales de sedimentos suspendidos, más del 95%, son transportados en 36.5 días al año (10% del tiempo) en las subcuencas del embalse Alhajuela, mientras que para las subcuencas del embalse Gatún varía entre 75% y 95%.

Los caudales mensuales y anuales de sedimentos suspendidos y su distribución, durante el periodo 1998-2007, se presentan en los Cuadros H.1 a H.7 y Gráficas H.1 a H7. En la distribución mensual de caudales de sedimentos suspendidos de las subcuencas que descargan en el embalse Gatún se observa que a partir del mes de agosto, durante la estación lluviosa, ingresan los mayores aportes de sólidos, entre 80% y 84% del total anual.

En las subcuencas que descargan en el embalse Alhajuela los mayores aportes sólidos se concentran en los meses de noviembre y diciembre (entre 57% y 68% del total anual). Esto ocurre cuando el embalse opera alrrededor de 71.63 m (235 pies) y el nivel máximo de operación. En estas subcuencas los caudales de sedimentos suspendidos durante los meses de septiembre y octubre disminuyen a menos del 5% del total anual, los cuales resultan inferiores inclusive a los aportes del mes de abril, durante la transición de la estación seca a lluviosa.

Al dividir los caudales de sedimentos entre el área de drenaje se determina la producción de sedimentos y su variabilidad espacial, lo que permite comparar cuencas de diferentes tamaños con respecto a la producción de sedimentos suspendidos como un indicador de la erosión de los suelos.

En la subcuenca de los embalses Alhajuela y Gatún, para el periodo de 1998-2007, se estimó la producción promedio de sedimentos suspendidos en 544 t/año/km² y 235 t/año/km², respectivamente. Se estimó la producción promedio de sedimentos suspendidos en la CHCP en 341 t/año/km².

Las subcuencas con mayor producción de sedimentos suspendidos (por encima del promedio de la CHCP) corresponden a los ríos: Pequení (727 t/año/km²), Boquerón (638 t/año/km²), Chagres (566 t/año/km²) y Gatún (351 t/año/km²), que corresponden al las del sector este. Las subcuencas con producción de sedimentos suspendidos por debajo del promedio en la CHCP corresponden a los ríos: Caño Quebrado (137 t/año/km²), Cirí Grande (209 t/año/km²) y Trinidad (230 t/año/km²). (mapa, Anexo A).

4.4 Volúmenes de sedimentos, tasas de sedimentación y pérdida de capacidad de almacenamiento de agua de los embalses Alhajuela y Gatún.

Los volumenes de sedimentos que han ingresado al embalse Alhajuela se determinaron a partir de los resultados de las batimetrías del embalse (suministrados por la Sección de Topografía, Hidrografía y Cartografía) y comparados con los estimados en el programa de medición del caudal de sedimentos suspendidos en ríos.

La batimetría de 2008 es considerada la mas completa y de mejor calidad de las realizadas hasta la fecha, ya que se realizó con el embalse operando en su nivel máximo y los sistemas automatizados tanto en hidrografía como en cartografía permitieron un mejor levantamiento en campo y evaluación de los datos hidrograficos.

Para cada batimetría realizada se generaron modelos de elevación digital hasta la elevación de 79.25 m (260 pies), a partir de los cuales se compararon las secciones transversales de 2008 y las de 1998,1983 y 1928 para la revisión y verificación de los datos hidrográficos (Gráfica I.4).

Los resultados actuales de las batimetrías del embalse Alhajuela indican que en el periodo de 1935-1983, tomando como referencia la elevación de 76.81 m (252 pies), se han depositado en el embalse 78.0 MMC a una tasa promedio de sedimentación de 1.592 MMC/año. La pérdida de capacidad de almacenamiento de agua durante ese periodo se estima en 10.2% (Cuadro I.4 y Gráfica I.2).

Para el periodo de 1984-1997, el volumen adicional de sedimentos depositado en el embalse Alhajuela es estimado en 7.03 MMC a una tasa promedio de sedimentación de 0.502 MMC/año. Este resultado es mucho menor al estimado en el estudio del inciso 2.2.6 en el cual se reportó una tasa de sedimentación de 2.271 MMC/año y además, es mas consistente con los resultados del programa de medición de sedimentos en ríos. Hasta 1997 se acumularon 85.0 MMC, con una pérdida de capacidad de almacenamiento de agua de 11.1% (Cuadro I.4 y Gráfica I.2).

Finalmente, para el periodo de 1998-2007, se estima que ingresaron al embalse Alhajuela 5.76 MMC a una tasa promedio de sedimentación de 0.576 MMC/año. El volumen de sedimentos acumulado hasta 2007 es de 90.8 MMC con una perdida de capacidad de almacenamiento de agua de 11.8% respecto a la capacidad original revisada y definida en 766.5 MMC a la elevación de 252 pies (Cuadro I.4 y Gráfica I.2).

De los 90.8 MMC de sedimentos que se han depositado hasta el 2007 en el embalse Alhajuela, 62% de los mismos, es decir 56.4 MMC, corresponden a sedimentos depositados en el volumen útil entre las elevaciones de 190 pies (57.9 m) y 252 pies (76.81 m). El volumen útil se ha reducido de 617.7 MMC, estimado de acuerdo a la topografía de 1928, hasta 561.3 MMC según la batimetría de 2008 (Gráfica I.3).

Según el programa de medición del caudal de sedimentos suspendidos en ríos, durante el periodo 1984-1997 se estimó que el volumen de sedimentos que ingresó al embalse Alhajuela fue de 4.81 MMC a una tasa de sedimentación de 0.343 MMC/año (Cuadros I.4 e I.5 y Gráfica I.2a). Este resultado subestima el volumen de sedimentos que ha ingresado al embalse en -31.7% respecto al obtenido de las batimetrías.

Para el periodo 1998-2007, el volumen de sedimentos que ha ingresado al embalse Alhajuela es estimado en 5.30 MMC a una tasa promedio de sedimentación de 0.530 MMC/año (Cuadros I.4 e I.6 y Gráfica I.2a). Este resultado tiene una diferencia de -7.9% respecto al obtenido por medio de las batimetrías. Para el periodo 1998-2007, ambas metodologías (medición del caudal de sedimentos en ríos y batimetrías) conllevan a resultados consistentes entre sí en la estimación del volumen ingresado al embalse y en la tasa de sedimentación.

En el embalse Gatún, con el doble del área de aportación pero con menor producción de sedimentos que el embalse Alhajuela, de acuerdo al PMCSS durante el periodo 1998-2007, se estima que ingresaron al embalse 4.56 MMC. Con este resultado, la tasa promedio de sedimentación a la cual se reduce la capacidad de almacenamiento de agua en el embalse Gatún es de 0.456 MMC/año (Cuadro I.6). Asumiendo que esta tasa promedio de sedimentación se haya casi triplicado durante el periodo sin mediciones de 1913-1986, al igual que lo muestran los resultados para el embalse Alhajuela, se estima un volumen de sedimentos depositados de cuando mucho 98 MMC en noventa y cinco años. Este volumen de sedimentos depositados, desde inicio de operaciones del embalse Gatún, representaría una pérdida menor al 2.0% en la capacidad de almacenamiento de agua.

Las tasas de sedimentación durante el periodo 1997-2008, aunque similares en ambos embalses, tienen mayor efecto en la pérdida de capacidad de almacenamiento del embalse Alhajuela comparado con el embalse Gatún debido a la menor dimensión del primero. Este hecho se observa al expresar la tasa de sedimentación como un porcentaje del volumen de almacenamiento total original que se pierde por año (%/año).

En efecto, para el embalse Alhajuela se obtuvo una tasa de sedimentación de 0.07 %/año versus 0.008 %/año para el embalse Gatún. Es decir, de mantenerse estas tasas promedios de sedimentación por un periodo de 100 años, la pérdida adicional (a partir del año 2008) en la capacidad de almacenamiento de agua sería de 7% en el embalse Alhajuela y menor al 1% en el embalse Gatún (Cuadro I.6).

Con respecto a la variabilidad de los volúmenes de sedimentos que ingresan anualmente a los embalses, en el embalse Alhajuela, durante los años más secos (2001 y 2005) del periodo 1998-2007, se estimó un aporte de sedimentos entre 0.196 MMC y 0.297 MMC, mientras que en el embalse Gatún, se estimó un aporte de sedimentos entre 0.162 MMC y 0.265 MMC. Por el contrario, en años húmedos (1999 y 2007), el aporte de sedimentos en la subcuenca del embalse Alhajuela se estimó entre 0.694 MMC y 1.12 MMC y en la subcuenca del embalse Gatún se estimó entre 0.636 MMC y 0.658 MMC (Cuadros I.2 e I.3).

4.5 Vida media de los embalses Alhajuela y Gatún

Considerando las tasas de sedimentación actual, los volúmenes disponibles de almacenamiento de agua a los niveles máximos de operación estimados al inicio del año 2008 y definiendo la vida media de los embalses como el tiempo requerido para acumular sedimentos a la mitad de la capacidad máxima actual, se obtiene que para el embalse Alahjuela la vida media es de 515 años y para el embalse Gatún de 5826 años (Cuadros I.7 e I.8). De acuerdo a estos resultados, las tasas de sedimentación del orden de las estimadas para el periodo 1998-2007 tienen poca incidencia en la pérdida de capacidad de almacenamiento del embalse Gatún y esta dentro de lo aceptable para un embalse de las dimensiones del de Alhajuela.

5 Conclusiones y recomendaciones

- C1. Los resultados de estudios y evaluaciones en el embalse Alhajuela, previos a los obtenidos con la batimetría de 2008 y el PMCSS del periodo 1998-2007, están sujetos a las limitaciones de la información: levantamientos hidrográficos con cantidad inadecuada de secciones transversales o falta de datos a partir de 70.10 m (230 pies) de elevación, diferente metodología en el procesamiento de niveles, curvas de descarga y caudales sólidos del periodo de 1981-1997.
- C2. Según los resultados de la batimetría de 2008, los estudios previos, que evalúan la sedimentación en el embalse Alhajuela, subestiman los volumenes de sedimentos que ingresaron al embalse en el periodo 1935-1983. Sin embargo, las proyecciones de éstos están basados en escenarios de gran deforestación en la CHCP que sobrestiman la realidad respecto a la pérdida de la capacidad de almacenamiento de agua.
- C3. Los resultados del PMCSS del periodo 1998-2007 son consitentes con los resultados actuales de las batimetrías de 1998 y 2008 en el embalse Alhajuela. Estos indican que hasta el 2007 se ha depositado un volumen de sedimentos de 90.8 MMC y perdido 11.8% de la capacidad inicial de almacenamiento de agua, estimada en 766.5 MMC. El volumen útil se ha reducido en 56.4 MMC, actualmente estimado en 561 MMC.
- **C4.** En el embalse Alhjajuela, durante los últimos 24 años (1984-2007) las tasas promedios de sedimentación se han mantenido estable y han disminuido en un orden de tres veces respecto a la del periodo 1935-1983. Para este periodo no se puede precisar en cuáles años ocurrió la mayor sedimentación.
- **C5.** La tasa actual de sedimentación (0.576 MMC/año) en el embalse Alhajuela y la producción promedio de sedimentos (680 t/año/km²) se consideran aceptables desde la perspectiva de pérdida en la capacidad de almacenamiento de agua, como lo indica la vida media del embalse estimada en 515 años. Sin embargo, pueden repercutir negativamente en la capacidad de regulación y en los beneficios económicos derivados de la operación del embalse, ya que la mayor parte de los sedimentos se depositan en el volumen útil.
- **C6.** En el embalse Gatún se ha estimado una pérdida en la capacidad de almacenamiento menor al 2% de la capacidad original de 5493 MMC.
- C7. En el embalse Gatún, con la tasa actual de sedimentación (0.456 MMC/año) y producción promedio de sedimentos (270 t/año/km²) del periodo 1998-2007, la velocidad a la cual pierde capacidad de almacenamiento de agua no tiene impacto en su operación. Los posible efectos pueden estar relacionados con el deterioro de la calidad del agua y costos de mantenimiento del Canal.

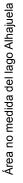
- **C8.** Las subcuencas de la CHCP con mayores tasas de producción de sedimentos son las que descargan en el embalse Alhajuela. En estas subcuencas, durante el periodo 1998-2007, las tasas promedios de producción de sedimentos son menores a 750 t/año/km² y en años muy húmedos alcanzaron valores de hasta a 1635 t/año/km². Debido a crecidas extraordinarias y deslizamientos de tierra.
- **C9.** Se determinó una regresión (r²=0.95) entre la producción de sedimentos (t/año/km²) y el caudal específico (l/s/km²), la cual permite estimar de forma indirecta la producción de sedimentos en subcuencas no aforadas, para periodos de diez años o más.
- **C10.** En cada estación hidrométrica se establecieron curvas de descarga de sedimentos, lo que permite controlar y dar seguimiento a las muestras de sedimentos recolectadas en campo y al comportamiento de la CHCP con respecto a la producción de sedimentos.
- R1. Realizar una batimetría del embalse Alhajuela cada 10 años y en el embalse Gatún a corto plazo, aprovechando las técnicas más modernas existentes que permitan cuantificar con mejor precisión los volúmenes de sedimentos depositados y su distribución en los embalses. Además, esta información permite verificar las curvas de elevación-capacidad, las cuales son importantes para el cálculo correcto de los balances hídricos de los embalses.
- **R2.** Establecer una metodología para estimar el caudal de sedimentos de fondo y hacer determinaciones de la densidad de los sedimentos depositados, debido a la incertidumbre de estos parámetros.
- **R3.** Efectuar un análisis de la información de las batimetrías del embalse Alhajuela a fin de evaluar la distribución de los sedimentos depositados.
- **R4.** Evaluar otros factores erosivos tales como: cantidad e intensidad de lluvias, pendientes y usos de la tierra, etc., a fin de determinar sus contribuciones e importancia respecto a la erosión de los suelos en la CHCP.

6 Bibliografia

- **6.1.** Final report on field investigation of the Madden Dam and reservoir site at Alhajuela. Kellog, H.F., Panama Canal Zone, 1931.
- **6.2.** Data on sediment transportation and deposition in the Canal Zone, The Panama Canal Zone, May 27, 1948.
- **6.3.** Erosion and sediment yield as affected by land use and slope in the Panama Canal Watershed. Larson, C.L., 1979.
- **6.4.** La sedimentación del embalse Alhajuela, Alvarado, L.A., Panama Canal Commission, junio de 1985.
- **6.5.** Madden Reservoir Sedimentation. Tutzauer, J.R., Panama Canal Commission, March 1990.
- **6.6.** Erosion and Sedimentation Manual. US Department of the Interior Bureau of Reclamation, November 2006.
- **6.7.** Reservoir Sedimentation Handbook: design and management of dams, reservoirs, and watersheds for sustainable use. Gregory L. Morris, Jiahua Fan.

ANEXO A
Mapa de producción de sedimentos suspendidos en la CHCP (1998-2007)

Cuerpos de Agua t/año/Km2 **†0**l **096** Bahía de Panamá Km Escala 1:510,000 El Chorro Mar Caribe


Producción de Sedimentos Suspendidos Periodo 1998-2007 t/año/km2

Cuenca del Canal de Panamá

LEYENDA

Estaciones Hidrométricas

Subcuencas del lago Alhajuela

Área no medida del lago Gatún

Subcuencas del lago Gatún

Drenaje

Autoridad del Canal de Panamá
Departamento de Ambiente, Agua y Energía
División de Agua
Sección de Recursos Hídricos
Unidad de Hidrología Operativa

ANEXO B

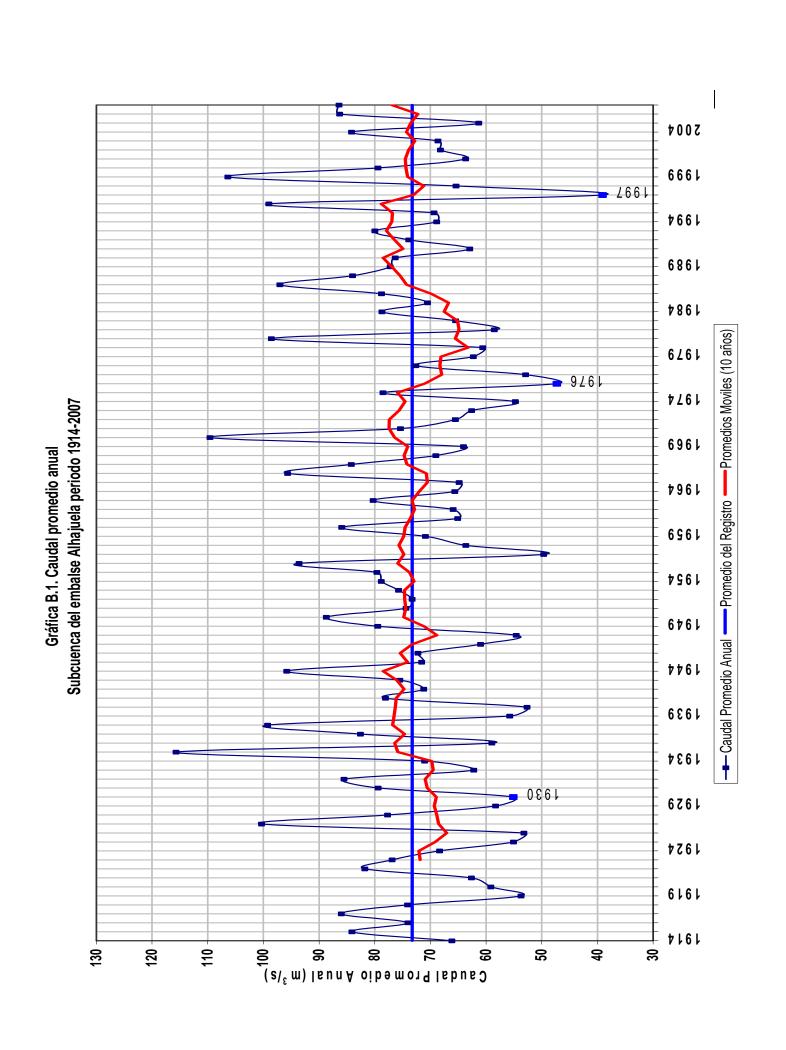
Características de los embalses Gatún y Alhajuela

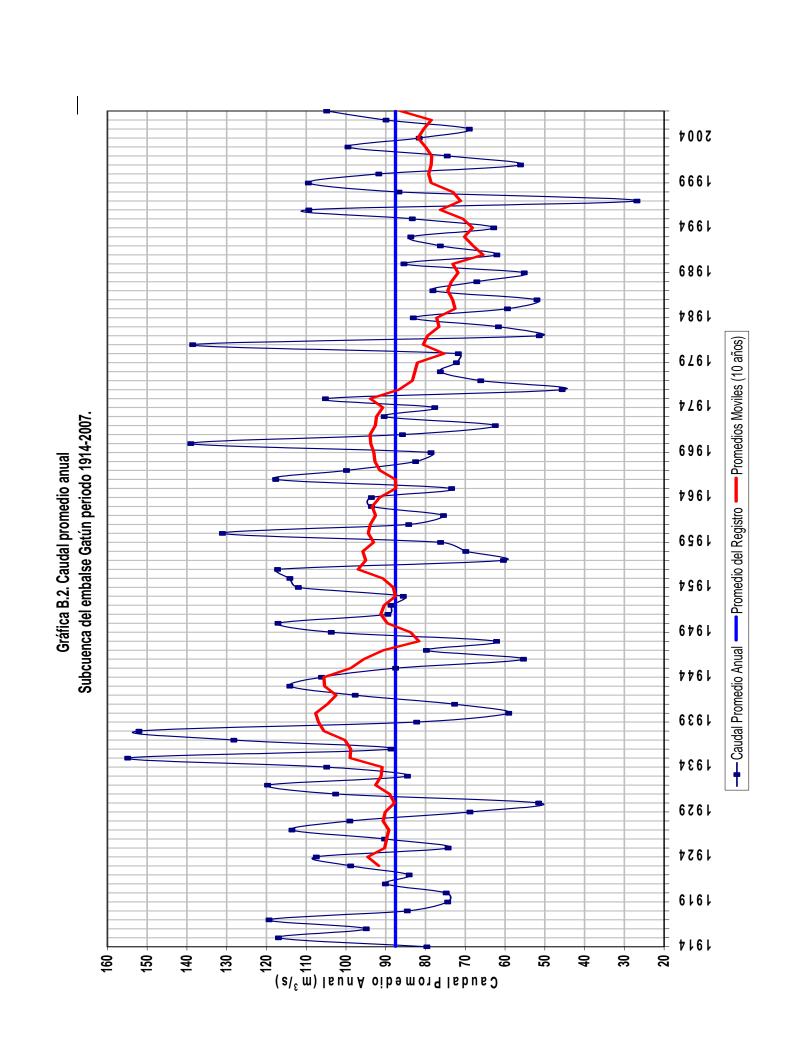
Lista de Cuadros

Cuadro B.1. Características de los embalses Gatún y Alhajuela.

Lista de Gráficas

Gráfica B.1. Caudal promedio anual de la subcuenca del embalse Alhajuela durante el periodo 1914-2007.


Gráfica B.2. Caudal promedio anual de la subcuenca del embalse Gatún durante el periodo 1914-2007.


Cuadro B.1 Carácterísticas del embalse Gatún y Alhajuela

Embalse Gatún	
Área de drenaje	2312 km ²
Superficie del embalse (elevación a 87.5 pies)	434 km ²
Nivel de Aguas Máximas Extraordinarias (NAME: 100 pies)	30.48 m
Nivel de Aguas Máximas de Operación (NAMO: 87.5 pies) Nivel Mínimo de Operación (NAMINO: 81.5 pies)	26.67 m 24.84 m
Volumen útil (niveles del embalse entre 81.5 a 87.5 pies)	769 MMC
Caudal promedio anual de entrada (87.4 m³/s,1914-2007)	2755 MMC
Capacidad original de almacenamiento de agua (elevación a 87.5 pies) Capacidad actual de almacenamiento de agua estimada (elevación a 87.5 pies)*	5493 MMC 5395 MMC

Embalse Alhajuela	
Área de drenaje	1026 km ²
Superficie del embalse (elevación a 252 pies)	50 km^2
Nivel de Aguas Máximas Extraordinarias (NAME: 260 pies)	79.25 m
Nivel de Aguas Máximas de Operación (NAMO: 252 pies)	76.81 m
Nivel Mínimo de Operación (NAMINO: 190 pies)	57.91 m
Volumen útil (niveles del embalse entre 190 a 252 pie) inicial**	618 MMC
Volumen útil (niveles del embalse entre 190 a 252 pies) en 2008**	561 MMC
Caudal promedio anual de entrada (73.3 m³/s,1914-2007)	2310 MMC
Capacidad original de almacenamiento de agua (elevación a 252 pies)**	766.5 MMC
Capacidad actual de almacenamiento de agua (elevación a 252 pies)**	675.7 MMC

^{*} Estimado al 2008 a partir del Programa de medición de caudales de sedimentos suspendidos ** Estimados a partir de resultados de la batimetría de 2008

ANEXO C

Resultados de estudios previos

Lista de Gráficas

- Cuadro C.1. Resultados del programa de muestreos de sedimentos suspendidos en la estación Alhajuela en el río Chagres (1929-1931).
- Cuadro C.2- Proyecciones de la vida útil del lago Alhajuela, Kellog 1931.
- Cuadro C.3. Tasas de sedimentación y proyecciones de pérdida de capacidad de almacenamiento de agua del lago Alhajuela según batimetrías de 1957, 1972-1973, 1975 y 1978, Curtis L. Larson 1979.
- Cuadro C.4. Pérdida de capacidad de almacenamiento de agua del lago Alhajuela, Luis Alvarado 1985.
- Cuadro C.5. Batimetría del lago Alhajuela de 1983. Sedimentos acumulados a elevaciones menores de 235 pies (1933-1983), Jack R. Tutzauer 1990.
- Cuadro C.6. Volumen de sedimentos que ingresan al lago Alhajuela, Jack R. Tutzauer 1990.
- Cuadro C.7. Tasas de sedimentación en el embalse Alhajuela-proyecciones de pérdida de capacidad de almacenamiento de agua.

Lista de Gráficas

- Gráfica C.1. Tasa de sedimentación del río Chagres, Kellog 1931.
- Gráfica C.2. Secciones transversales establecidas para determinar sedimentación del embalse Alhajuela, 1973.
- Gráfica C.3. Capacidad de almacenamiento de agua para diferentes niveles de referencia en el embalse Alhajuela, 1997.

CUADRO C.1
Resultados del Programa de muestreo de sedimentos suspendidos
Estación Alhajuela en el río Chagres (1929-1931)

Mitad mes	Descarga	Sedimento	Volumen de sedimento
Periodo finalizado	millones de pie ³	lbs/millones de pie ³	pie ³
Octubre 31, 1929	5751	3406	292000
Noviembre 15, 1929	4917	2781	196300
Noviembre 30, 1929	4489	1144	74200
Diciembre 15, 1929	3772	1694	92100
Diciembre 31,1929	2032	1438	42100
Enero 15, 1930	1490	3065	65700
Enero 31, 1930	1393	1987	39800
Febrero 15, 1930	934	1219	16340
Febrero 28, 1930	678	2441	23800
Marzo 15, 1930	678	3593	35000
Marzo 31, 1930	598	569	4920
Abril 15, 1930	779	1155	12930
Abril 30, 1930	1685	1168	28300
Mayo 15, 1930	2219	1025	32850
Mayo 31, 1930	3323	1360	65300
Junio 15, 1930	2964	1566	66700
Junio 30, 1930	2258	1204	39000
Julio 15, 1930	3325	1841	88200
Julio 31, 1930	2796	817	33000
Agosto 15, 1930	1881	381	10350
Agosto 31, 1930	2960	1367	58000
Septiembre 15, 1930	2670	1753	67300
Septiembre 30, 1930	4318	4867	302000
Octubre 15, 1930	3743	1298	70000
Octubre 31, 1930	5242	1654	124800
Noviembre 15,1930	4617	3120	206900
Noviembre 30, 1930	4454	4618	296200
Diciembre 15, 1930	4029	2746	159200
Diciembre 31, 1930	-	-	-
Enero 15, 1931	-	-	-
Enero 31, 1931	1074	811	12250
Febrero 15, 1931	890	4805	61600

Sedimento total del periodo oct 1929 - feb 1931 (pie ³)	2617140
Sedimento total anual (pie ³)	1964000

Densidad promedio de sedimentos: 69.5 lbs/pie³ (1.113 t/m³)

1 pie 3 = 0.02831685 m 3

CUADRO C.2

Proyecciones de la vida útil del lago Alhajuela, Kellog 1931.

Elev	ación	Porcentaje de la capacidad del embalse respecto a la elevación de 240 pies*	Tiempo requerido
(pie)	(m)	(%)	(años)
150	46	3.2	358
200	61	35.0	3920
240	73	100.0	11220

^{*}Capacidad de almacenamiento de agua de 22057 MCF (625MMC) a 240 pies.

CUADRO C.3

Tasas de sedimentación de varios periodos basadas en las batimetrías de:
1957, 1972, 1973, 1975 y 1978 (Curtis L. Larson, 1979).

19	57, 1972, 1973, 1975 y 197	6 (Curtis L. Larson, 1	979).
Periodo	Acumulación de sedimentos	No. de años	Tasa de sedimentació
	(cm)		(cm/año)
1934-1957	86.4	23	3.8
1957-1973	43.0	15.9	2.7
1973-1975	18.1	2.1	8.6
1975-1978	19.0	3.0	6.3
Total	166.5	44.0	3.8
1934-1973,	Predesarrollo	3.32 cm/año	0.937 MMC/año
1973-1978, Usc	de tierra (1978)	9.20 cm/año	2.595 MMC/año
Pérdida de almacen	amiento (1934-1978):	46.97 MMC	5.9 %

Nota: para expresar la tasa en cm/año se utilizó como referencia el área del lago a 210 pies de elevación: 28.21 km².

Proyecciones de pérdida de almacenamiento

Doriodo	Pérdida de
Periodo	almacenamiento (%)
1934-2000	22.6
1934-2020	46.4
1934-2020	81.3

CUADRO C.4

Pérdida de capacidad de almacenamiento de agua del lago Alhajuela, Luis Alvarado 1985.

		F	Acumulación	Almacenamiento	-1 - - - - - - - - -	0/ 01 15 10 10 10 10 10 10 10 10 10 10 10 10 10
Periodo	Años	lasa	Sedimentos	Disponible	Capacidad I otal	capacidad Lotal % de Peldida de
		cm/año	MMC	MMC	MMC	almacenamiento
1934-1983	*67	3.02	37.906	761.4	799.3	4.7
1983-1990	7	3.90	13.722	747.7	761.4	6.5
1990-2000	10	5.12	25.73	721.97	747.7	9.7
2000-2010	10	6.34	31.856	690.11	722.0	13.7
2010-2020	10	7.56	37.983	652.23	690.2	18.4

* 25 años de deforestación significativa

CUADRO C.5

Batimetría del lago Alhajuela de 1983. Sedimentos acumulados a elevaciones menores de 235 pies (1933-1983), Jack R. Tutzauer (1990).

Estacion	Inactivo	activo <195 pie	Activo 19	Activo 195-235 pie	Total <	Total <235 pie
	MCF	MMC	MCF	MMC	MCF	MMC
0-100	0	0.0	188	5.3	188	5.3
100-200	64	1.8	123	3.5	187	5.3
200-300	82	2.3	23	0.7	105	3.0
300-400	54	1.5	26	0.7	80	2.3
400-200	523	14.8	215	6.1	738	20.9
200-290	46	1.3	တ	0.3	22	1.6
Total	269	21.8	584	16.5	1353	38.3

Los volúmenes de sedimentos medidos hasta la elevación de 235 pies en la batimetría de 1983 son ajustados hasta la elevación de 252 pies, los cuales no fueron medidos:

Área del lago Alhajuela entre la elevación de 195 y 235 pies (millas cuadradas).
Factor de ajuste: Sedimentos acumulados entre área del lago en el rango de 195-235 pies (MCF/mi²)
Área del lago Alhajuela entre la elevación de 235 y 252 pies (millas cuadradas).
Sedimentos acumulados entre 235-252 pies (MCF):
Sedimentos acumulados ajustados a la elevación de 252 (pies) en MCF (1933-1983):
Sedimentos acumulados ajustados a la elevación de 252 (pies) en MMC (1933-1983):
MCF: millones de pies cúbicos

8 73 3 219 1572 44.5

CUADRO C.6

Volumen de sedimentos estimados que ingresan al lago Alhajuela, Jack R. Tutzauer (1990).

 $Sd = (296.66 \text{ Rm2} -50516.23 \text{ Rm} + 2283608) * 65.723 * 10^{-6}$

Sd: sedimento total anual depositado en MCF

Rm: Lluvia promedio anual en la subcuenca del lago Alhajuela en pulgadas

Factor de conversión toneladas (short) a MCF (densidad 65 lbs/pie³):

3.07692E-05

ctor de ajuste volumen de sedimentos :	15/2 MCF//36 MCF=	2.136
	Factor Fórmula :	6.572E-05

		Factor Formula :	6.572E-05
۸۵۰	Lluvia	Sedir	nentos
Año	(pulg)	MCF	MMC
1933	98.0	12	0.339
1934	104.4	16	0.452
1935	169.0	146	4.130
1936	105.2	17	0.470
1937	135.3 136.6	58	1.637
1938	136.6	60	1.710
1939	93.8	10	0.289
1940	89.8 117.7	9 29	0.260
1941	117.7	29	0.833
1942	114.6	26	0.727
1943 1944	112.6 130.6	23 49	0.664 1.389
1945	103.9	16	0.442
1946	103.9	15	0.442
1947	93.2	10	0.284
1948	91.8	10	0.272
1949	117.8	30	0.837
1950	117.8 127.5	44	1.238
1951	111.8	23	0.640
1952	128.1	45	1.267
1952 1953	128.1 117.9	30	0.840
1954	127.5	44	1.238
1955	125.4	40	1.143
1956	132.0	52	1.460
1957	88.4	9	0.254
1958 1959	109.1 120.4	20 33	0.565
1960	132.2	53 52	0.934
1961	104.2	16	1.470 0.448
1962	98.0	12	0.339
1963	121.1	34	0.962
1964	105.9	17	0.486
1965	115.8	27	0.767
1966	137.5	62	1.761
1967	130.0	48	1.359
1968	105.8	17	0.483
1969	104.7	<u>16</u>	0.459
1970	144.4	77	2.186
1971	108.3	19	0.544
1972 1973	110.9 117.7	22 29	0.614
1973	93.1	29 10	0.833 0.283
1974	128.2	45	1.271
1976	81.6	9	0.255
1977	97.6	12	0.333
1978	113.2	24	0.682
1979	105.7	<u>1</u> 7	0.481
1980	103.7	15	0.438
1981	144.7	78	2.206
1982	87.9	9	0.252
1983	118.3	30	0.855
1984	110.1	21	0.592
1985	107.3	18	0.519
1986 Subtotal	100.6 113.58	13 1624	0.380 46.0
4007		al año 2000	0.004
1987 1988	113.6 113.6	25 25	0.694 0.694
1900	113.0	∠3 25	0.094

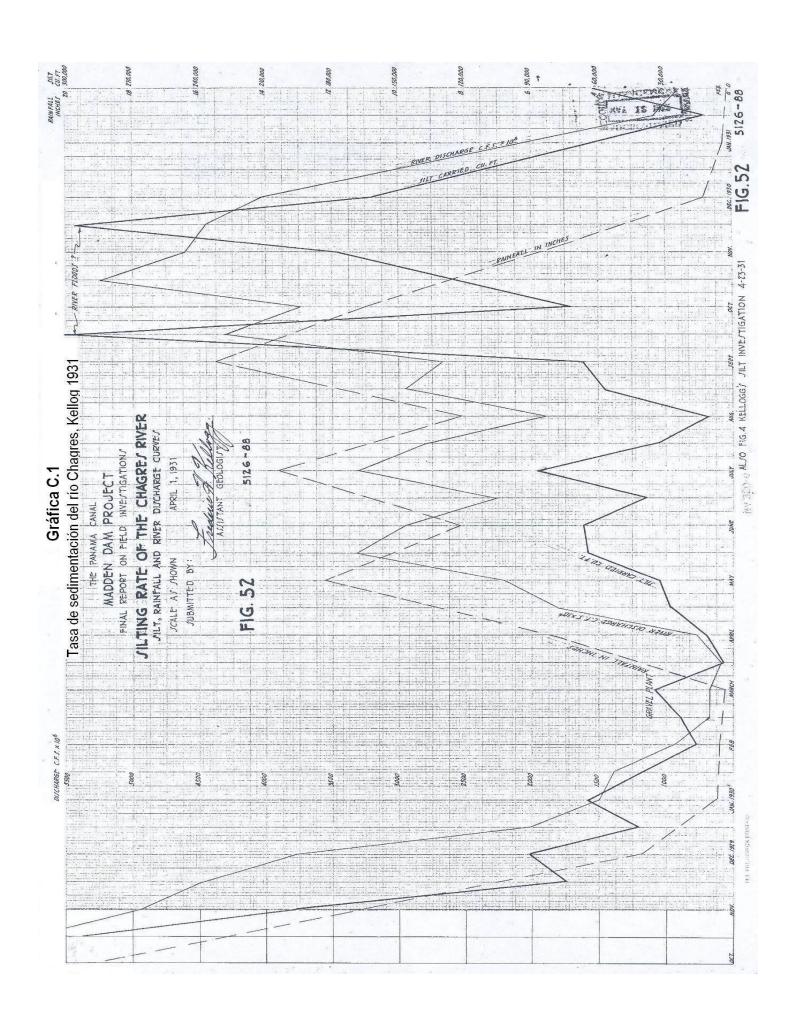
	Proyeción a	al año 2000	
1987	113.6	25	0.694
1988	113.6	25	0.694
1989	113.6	25	0.694
1990	113.6	25	0.694
1991	113.6	25	0.694
1992	113.6	25	0.694
1993	113.6	25	0.694
1994	113.6	25	0.694
1995	113.6	25	0.694
1996	113.6	25	0.694
1997	113.6	25	0.694
1998	113.6	25	0.694
1999	113.6	25	0.694
Subtotal		319	9.0
-			

Total 1943 55.0

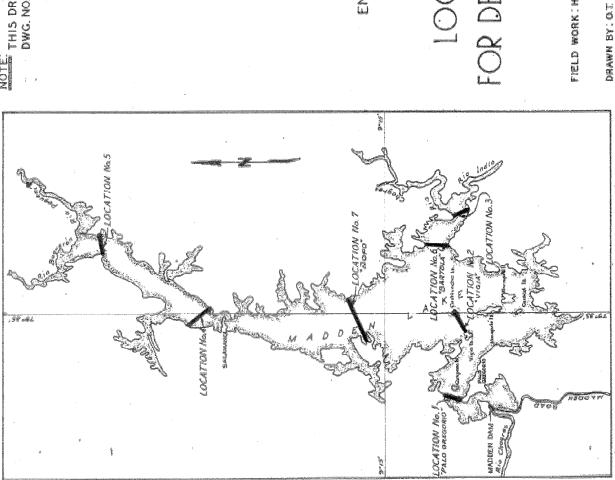
Tasas de sedimentación en el embalse Alhajuela - Proyecciones de pérdida de capacidad de almacenamiento de agua. **CUADRO C.7**

	17 17 17 17 17 17 17 17 17 17 17 17 17 1		Elevación de	Volumen de Sedimentos Acumulados	en de entos lados	Almacena- miento	Tiempo	Pérdida de Almacena-	Tasa de	ı de	Eficiencia de Retención	Producción de
Estudio de Referencia	Metodo	Leriodo	Referencia	Parcial	Total	Disponible	on landau	miento	Sedimentacion	IIacioii	de Embalse	Sedimentos
			pie	MMC	MMC	MMC	años	%	MMC/año	%/año	%	t/año/km²
Silt layestigation 04/23/1031		1934-2292	252		19.9	779.6	358	2.5	0.056	0.007	92.26	61.9
Villa II 0 1,2 Kellog H D 1,2	MSR 1930	1934-5854	252		218.0	581.5	3920	27.3	0.056	0.007	96.89	61.5
		1934-13154	252		624.0	175.5	11220	78.0	0.056	0.007	94.20	59.8
Erosion and Sediment Yield		1934-1973	252		36.5	763.0	39	4.6	0.937	0.12	97.43	1097
as Affected by Land Use and		1974-1978	252	10.4	46.9	752.6	4	5.9	2.595	0.32	98.05	3019
Slope in the Panama Canal	Batimetría 70's	1979-2000	252	133.8	180.7	618.8	22	22.6	6.080	0.76	96.79	7165
watersned,		2001-2020	252	190.3	371.0	428.5	20	46.4	9.514	1.19	95.49	11365
Curis L. Larson, 1979		2021-2040	252	279.0	650.0	149.5	20	81.3	13.951	1.75	90.93	17501
		1934-1983	235		37.9	761.6	49	4.7	0.774	0.10	97.57	904
Sedimentation In Madden		1984-1990	235	13.7	51.6	747.9	7	6.5	1.960	0.25	96.92	2307
Reservoir,	Batimetría 1983	1991-2000	235	25.7	77.4	722.1	10	9.7	2.573	0.32	97.16	3021
Alvarado, Luis A.1985',3.		2001-2010	235	31.9	109.2	690.3	10	13.7	3.186	0.40	66.96	3746
		2011-2020	235	38.0	147.2	652.3	10	18.4	3.798	0.48	96.76	4478
: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Batimetria 1983	1933-1983	252		44.5	755.0	20	5.6	0.890	0.11	97.55	1041
Sedimentation.	Q	1933-1986	252		37.6	761.9	53	4.7	0.710	0.09	97.26	830
Tutzauer. Jack. R 1990 ⁴	MSK 1981-1986	1933-1986	252		46.0	753.5	53	5.8	0.868	0.11	97.56	1014
		1987-1999	252	9.0	55.0	744.5	13	6.9	0.695	0.00	97.10	816
Madden Reservoir Storage		1935-1983	252		86.8	700.4	49	10.9	1.771	0.22	97.32	2076
Capacity Loss,	Batimetría 1997	1984-1997	252	31.8	118.6	668.6	14	14.8	2.271	0.28	96.76	2678
Memorandum 17/dic/1997		1935-1997	252		118.6	668.6	63	14.8	1.883	0.24	97.25	2208

Respecto a la capacidad total original: 799.5 MMC a la elevación de 252 pies


² Para la determinación de la producción de sedimentos se usó el valor de la densidad reportada en el estudio (69.5 lbs/pie³).

³ La tasa de sedimentación está basada en el volumen de sedimentos acumulados por debajo de 235 pies.


⁴ La tasa de sedimentación a partir de la batimetria está basada en un ajuste para el volumen de sedimentos no medidos entre las elevaciones 235 y 252 pies.

Respecto a la capacidad total original: 787.2 MMC a la elevación de 252 pies

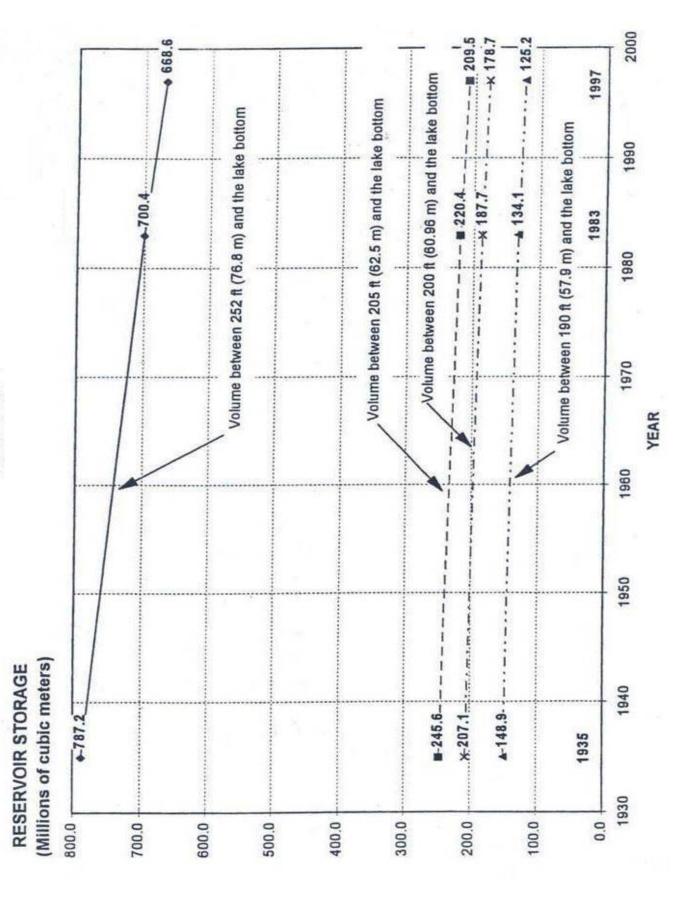
Tasa de sedimentacion proyectada.

NOTE: THIS DRAWING SUPERSEDES DAC NO OF SA

LOCATION SCALE I: 1000000

ENGINEERING AND CONSTRUCTION BUREAU TOOM PARTY BALBOA HEIGHTS CANAL ZONE ENGINEERING DIVISION PANAMA CANAL

FOR DETERMINATION OF SILTING LOCATION OF SOUNDINGS MADDEN LAKE


FIELD WORK: HYDROCRAPHIC SECTION

SCALE = 1.5000

CHECKED BY: A SAMPLE

REVIEWED

Gráfica C.3

Data on sediment transportation and deposition in the Canal Zone
Department of Operation and Maintenance
Special Engineering Division
Mayo 27, 1948.

Isthmian Canal Commission of 1899-1901

Month, 1900	Solid Matter, Alhajuela	cubic yards Bohio	Total Discharge Alhajuela	, acre-feet Bohio
June	15,180	30,540	115,080	189,520
July		152,760	4	366,470
August	81,230	116,000	251,730	361,550
September	41,660	79,360	184,520	308,830
October	97,000		300,610	

After making some rough comparisons with sediment loads of the Mississippi and Ganges Rivers, Abbot concluded that the data "made it evident that the volume of sedimentary matter which will be carried in suspension to Lake Bohio will have little practical importance. Whatever comes down will be deposited near the entrance where it can easily be removed by dredging. It is true that, in addition, some sand and gravel will be rolled along the bottom, but the volume will be unimportant, and the sedimentary matter, also, will be largely reduced if the precaution be taken to regulate the freshets as well as the floods by an upper lake at Alhajuela." Regarding the French engineers' attitude, Abbot states, "The fact that the Chagres above Gamboa is essentially a clear-water stream was so well understood by the engineers of the New Company that no observations to determine the amount of earthy matter carried in suspension was deemed necessary."

The 1929-31 Tests. The second sampling program was inaugurated by E. S. Randolph to provide more data than supplied in the 1900 test and to determine noughly the life of Madden Reservoir. Sampling procedure is described by Frederic H. Kellogg, Assistant Geologist, in a memorandum to the Designing Engineer, March 23, 1931, as follows: "Samples of river water were taken daily from each of four points along an imaginary line drawn across the river at the damsite. The sampling cup used had a flap valve in both top and bottom, so that when it was lowered through the water, the water would flow through, but when drawn up, both flaps would close. . . . In taking each sample, the cup was lowered to a point about one-third of the distance from the surface of the river to the river bottom. The samples taken were poured into a 2-1/2-gallon pail to be mixed, and an aliquot portion of one quart retained in a glass jar. This quart would be poured into a 5-gallon carboy. On the first and fifteenth of each month the carboy of sampled water would be sent to the Miraflores Testing Laboratory for suspended matter determination."

The results of the suspended sediment sampling program are tabulated in pounds per million cubic feet of water and in cubic feet of silt, using a density of 69.5 pounds per cubic foot, which is an average density from two field tests.

Half-Month	Discharge, million	Sediment,	Volume
Period Ended	cubic feet	lb. per million c. f.	of Silt, cubic feet
October 31, 1929	5,751	3,406	292,000
November 15, 1929	4,917	2,781	196,300
November 30, 1929	4,489	1,144	74,200
December 15, 1929	3,772	1,694	92,100
December 31, 1929	2,032	1,438	42,100
January 15, 1930	1,490	3,065	65,700
January 31, 1930	1,393	1,987	39,800
February 15, 1930	934	1,219	16,340
February 28, 1930	678	2,441	23,800
March 15, 1930	678	3,593	35,000
March 31, 1930	598	569	4,920
April 15, 1930	779	1,155	12,930
April 30, 1930	1,685	1,168	28,300
May 15, 1930	2,219	1,025	32,850
May 31, 1930	3,323	1,360	65,300
June 15, 1930	2,964	1,566	66,700
June 30, 1930	2,258	1,204	39,000
July 15, 1930	3,325	1,841	88,200
July 31, 1930	2,796	817	33,000
August 15, 1930	1,881	381	10,350
August 31, 1930	2,960	1,367	58,000
September 15, 1930	2,670	1,753	67,300

(Table concluded on next page)

(Table continued from preceding page)

Half-Month Period Ended	Discharge, million cubic feet	Sediment, lb. per million c. f.	Volume of Silt, cubic feet
September 30, 1930	4,318	4,867	302,000
October 15, 1930	3,743	1,298	70,000
October 31, 1930	5,242	1,654	124,800
November 15, 1930	4,617	3,120	206,900
November 30, 1930	4,454	4,618	296,200
December 15, 1930	4,029	2,746	159,200
December 31, 1930	occin	dentiles .	saplo
January 15, 1931	anda	40000 ·	entro
January 31, 1931	1,074	811	12,250
February 15, 1931	890	4,805	61,600
Total silt Annual silt .	. ,		. 2,617,140

Time to fill Madden Reservoir:

	Percentage of Reservoir Capacity	
<u>Elevation</u>	at Elevation 240	Years
150	3.2	358
200	35.0	3,920
240	100.0	11,220

It was concluded by Mr. Kellogg that the amount of silt carried by the Chagres River is very low. In comparison with the above estimates on rate of filling of the reservoir, the estimate by Mr. Randolph from the 1900 data indicated filling of 10 percent of the reservoir in 495 years. A reconnaissance in 1935, one year after Madden Lake was filled with water, disclosed some silt deposits up to one foot average depth. During another reconnaissance in May 1947, delta deposits 10 to 15 feet deep were observed. Notes on this reconnaissance are included as Supplement 2 to this memorandum.

Proceedings
of the
U.S. Strategy Conference
on

Tropical Deforestation

U.S. Department of State

U.S. Agency for International Development

June 12-14, 1978 Washington, D.C. were established several years ago, have not yet reached \$1 million. This is an example of the discrepancy in research funding. The Philippines are beginning to learn something from this lesson.

In Kenya, in the last few months, there have been unusually heavy rains and extensive floods. Roads have been washed away and the railway system has been disrupted. As a result, government agencies are now becoming aware of the vital role played by forests in controlling erosion.

In some countries hydroelectric schemes are being halted because of siltation in reservoirs. Engineers in some countries are now promoting forestry. In still other developing nations, domestic water supplies to urban areas are both inadequate and unhealthy because of deforestation activities. Again, forestry can serve as an important support factor for development campaigns designed to meet basic human needs

Any important U.S. strategy in the developing world should include the promotion of agroforestry. AID has already begun to undertake the establishment of community woodlots in order to relieve the pressure by fuel woodcutters on primary or little disturbed forests. But it has been estimated by the World Bank that in order to establish community woodlots of sufficient scope for the developing world, some \$2.5 billion would be required.

"DEFORESTATION—DEATH TO THE PANAMA CANAL"

DR. FRANK WADSWORTH, Director, Institute of Tropical Forestry, U.S. Department of Agriculture, Rio Peidras, Puerto Rico

The Panama Canal is probably the world's most important ship channel. Nearly 15,000 ships pass through it every year, and its width and depth dictate the design, dimensions, and cargo displacement of much of the world's fleet. The Canal reduces open ocean shipping by distances of up to 10,000 miles.

The recent Panama Canal Treaty, providing for relinquishment of the Canal by the year 2000, reflects no decline in U.S. interest in the Canal but rather, in line with Panama's request, that the Canal should be administered by that sovereign nation.

The capability of the fresh-water supply of the Canal to continue to meet growing demands has been taken for granted. About one-third of the water of Gatun Lake is used to generate hydroelectric power. Additional water from the lake and from the tributary reservoir, Lake Alajuela, serves urban needs in the Canal Zone and in the cities of Panama and Colon. The passage of each ship through the Canal releases 52 million gallons of stored fresh

water to the sea. This use disposes of more than half of the runoff from the Canal watershed. Nevertheless, a set of locks one-third larger is under consideration which would require an even greater amount of fresh water for each additional ship passage accommodated.

Land use within the tributary watersheds has also reflected confidence in the capabilities of the Canal watersheds to meet growing demands. Originally covered with dense rain forest and still 85 percent forested as recently as 1952, some 250,000 acres, or 35 percent, of the Canal watersheds have since been deforested—burned for cultivation or pastureland.

The boundaries of the Canal Zone have never included the headwaters that feed Gatun Lake. Not only these headwaters, but also parts of the Zone itself have, in recent years, been deforested. Apprehension of trespassers in the Zone by the United States is now complicated by criticism in the Panamanian press.

In May of 1977, the passage of an above average number of ships, an increased use of water for hydroelectric power and the domestic supplies of growing cities, and the production of timber, food, and forage crops within the Canal watershed, led to a dramatic demonstration of the limits of the capability of the water system. The surface of Gatun Lake dropped to 3.1 feet below the level required for full Canal use. Some ships sent part of their cargo across the Isthmus by land, reloading it at the other coast, and certain bulk cargo shippers even abandoned the Canal, sending very large cargo carriers around the Horn.

In 1977, this predicament coincided with a serious drought, and this was seen as a harbinger of what could soon take place every year. Water consumed for power and domestic needs drains the lake. Deforestation and cultivation in areas adjacent to headwaters accentuate both flood losses through the spillway and low flow in the dry season. Deforestation has caused sedimentation in Lake Alajuela to depths of 25 feet in some places, resulting in the lake's having already lost more than 5 percent of its active storage capacity. Current land use trends will, by the year 2000, result in the sedimentation of about 40 percent of the storage capacity of Lake Alajuela. This would mean further losses to shipping due to widely varying draft tolerances and drastic fluctuations in water availability for power and urban use.

Several solutions to these growing water problems have been considered. Removal of sediment from a reservoir the size of Lake Alajuela is not considered feasible. Raising Madden Dam by 10 feet is physically feasible, but at best would only delay the crisis. The five additional reservoir sites existing in the watershed could only replace the active storage capacity being lost at Lake Alajuela and would themselves eventually become sedimented. Channeling water from an adjacent watershed could increase the water supply, but would also increase sedimentation because adiacent watersheds are also being deforested. The pumping of sea water into Gatun Lake involves the risk of introducing organisms from the Atlantic into the Pacific.

None of these proposals is more than a stop-gap procedure because none offers more than a temporary reduction in the rate of deterioration. Only forests can restore and stabilize the capacity of the Canal. Even if Madden Dam were raised, the five additional dams built, fresh water tunneled from elsewhere, and power and urban water consumption discontinued completely, the effect of continued deforestation would be inexorable. Sooner or later it would mean death to the Canal as a reliable world trade route.

The most critical remaining area of primary forest in the Canal Zone covers some 225,000 acres in the rainy headwaters of the Chagres River and adjacent subwatersheds tributary to Lake Alajuela, This area provides about 40 percent of the water for the entire Canal watershed. It is now being invaded by shifting cultivators. This is of critical significance to the United States, and a major irreversible decline in the utility of the Canal can be expected to take place during the incumbency of the United States as operator of the waterway unless corrective action is taken immediately. But by the time the United States transfers the Canal to Panama, the Canal may have become a worthless ditch, a colossal monument to resource mismanagement. However fortuitous the timing, could the United States deny that it had foreseen the trouble and not forestalled It? Could the United States point to the fact that it does not control the critical headwaters outside the Canal Zone while the Zone is being continually deforested? Would the United States really have had no part in this obstacle? Clearly the diplomatic problems in this respect could transcend those which brought on the recent treaties.

The most urgent step necessary to save the Canal is the immediate halt of deforestation of the watershed, particularly in the valleys of the Chagres and Indio rivers. The capacity of these remaining rain forests to control soil and water movement is almost irreplaceable. Of nearly equal urgency is the discontinuation of cultivation and pasturing in the watershed and the reforestation of an additional 240,000 acres of steep land. A rational program of land use

will also require the more intensive use of some 150,000 acres suitable for agriculture, thereby providing employment for the 10,000 rural families living within the watershed. These watershed control practices are needed chiefly outside the Canal Zone. Leadership for this program must come from Panama since even the forest within the Canal Zone can no longer be protected without the support of Panamanian authorities. Since operation of the Canal in the immediate future is in leopardy, it seems more than logical that the United States share with Panama the cost of needed conservation, watershed management, and rural development,

USAID has for some months been developing a five-year watershed management program with the government of Panama. The program is aimed at developing the Department of Renewable Natural Resources (RENARE), an agency within the Ministry of Agriculture, with emphasis on protection and development of the Canal watershed. An AID project may start a program to protect the Canal, but it could fall short in one critical aspect-continuity. A longterm assurance of adequate water for the Canal should not have to rely on extraordinary financial allotments made from time to time by the two governments. What is needed is an assured continuity which would sustain a cadre of well-trained. career-oriented personnel.

If the future of the Canal is at stake, should not management of the watershed be a proper and high priority use of Canal fees? These fees, which are said to amount to \$300 million annually, are used in part for other types of Canal maintenance, such as dredging the channel. A flat percent of gross Canal fees would presumably rise with inflation and thus assure long-term support. Matching of fee allotments by the Panamanian government might be desirable, but if required, could introduce an element of uncertainty into the program which must be avoided. If the program were supported entirely from Canal fees before the year 2000, it would have no adverse financial impact on Panama thereafter.

The recently signed Panama Canal Treaty provides in Article VI for a Joint Commission on the Environment, representing both governments, to oversee the watershed program between now and the year 2000. No treaty provision, however, appears to support or staff the commission. The channeling of funds from Canal fees for the operation of this commission and for the watershed management program of RENARE could provide continuity and involvement of both governments. The commission might utilize AID as a source of technical support. A continuing watershed protection management program, led from within the Panamanian government seems. under the critical circumstances that prevail, to be a minimum obligation of the United States, It could assure the preservation of the Canal as a world resource during the U.S. period of its operation and make possible its continued utility for an indefinite period thereafter.

Discussion

Among the views expressed in response to **Dr. Wadsworth's** presentation was the recommendation that the U.S. government should not provide funding for development projects abroad which would result in the destruction of tropical forest areas.

Another speaker noted that although conservation is often viewed as an impediment to progress, high economic costs are usually associated with projects that lack conservation practices.

Erosion and sediment yield as affected by land use and slope in the Panama Canal Watershed. Larson, Curtis .L., 1979.

Landslides are a problem in the steeper portions of the watershed where, the soil also tends to be quite shallow. Although slides sometime occur in undisturbed areas, they are more common where clearing has occurred. In some cases the slides feed directly into stream channels. As yet the watershed has few roads but, because of the steep topography, they contribute to the erosion. Urbanization has not yet entered the watershed, but is occurring in areas nearby.

RATES OF SEDIMENT ACCUMULATION

Sediment soundings in Lake Alajuela were begun by the Panama Canal Company in 1957. Five lines were established in the lake for this purpose and two additional lines in 1973. Elevations of the sediment surface were measured at 15 m. intervals along these lines in 1957, 1972-1973, 1975 and 1978. The original bottom elevations were taken from topographic surveys made before construction of Madden Dam.

For purposes of determining mean depths of sediment over the lake area, the reservoir was divided into seven subareas, each represented by one of the bottom cross-sections. These areas varied from 2.4 to 37.6% of the lake area, since several of the lines are across narrow arms of the lake and relatively few are across the wider, deeper portions. Additional lines were established in 1978 to reduce this imbalance.

The data, as well as visual observations, show that deltas formed in the narrow, shallow portions of the lake at the mouths of the tributaries and filled with sediment by 1973, some much earlier. At times, some of this old sediment is carried out into the deeper parts of the lake along with new sediment. Present sediment depths vary from about one meter in the deep areas to 3 to 6 meters in delta areas.

Weighted mean depths of sediment accumulation, representing sediment volumes, were calculated for each period between soundings (Table 2). From these values, rates of sediment accumulation were determined. The second period is seen to have a somewhat lower rate than the first, probably due to consolidation of the sediment deposited earlier. The rate of sediment accumulation increased during the 1970's, as expected, when clearing of the forest became significant. The lower rate during the 1975-1978 period, as compared to the preceding period, can be attributed to unusually low precipitation and runoff in 1976 and 1977. The rainfall and runoff for the 2-year period were only 78% and 66%, respectively, of the normal amounts.

Since clearing was insignificant until somewhere around 1970, the first two periods were combined. The last two periods, being rather short, were combined also. The weighted mean sedimentation rates for the two combined periods are then as follows:

1934-1973: 1973-1978: 3.32 cm./yr.

7.32 cm./yr.

The first rate, 3.32 cm./yr., will be considered representative of the predevelopment period.

Table 2. Mean depths of sediment accumulation in Lake Alajuela for various periodel.

Period .	Sediment Accumulation (cm.)	No. of Years	Rate of Accumulation (cm./yr.)
1934-57	86.4	23.0	. 3.8
1957-73	43.0	15.9	2.7
1973-75	18.1	2.1	8.6
1975-78	19.0	3.Q	6.3
Total	166.5	44.0	ener.

 $[\]frac{1}{1}$ Based on bottom soundings by Panama Canal Company in 1957, 1972–1973, 1975 and 1978.

The second rate, 7.32 cm./yr. applies to the current land use but, being for a short period with several rather dry years, needs to be adjusted for subnormal rainfall and runoff to obtain a value for normal annual rainfall. For the 5-year period 1973-1978, the annual runoff was 20.4% below the long-term average. Thus, the above rate is divided by 0.796, giving a "normal" sedimentation rate of 9.20 cm./yr. for the reservoir with the current land use.

The above rates of sediment accumulation, applied to the reservoir area, $28.21 \text{ km}^2 \frac{1}{2}$, gives the mean annual volume of sedimentation for the two periods. The resulting values are:

Predevelopment (1934-73): 937 x
$$10^3$$
 m 3 /yr. Current land use (1973-78): 2595 x 10^3 m 3 /yr

The current value is seen to be 2.77 times the value prior to significant land clearing. More startling, however, is the fact that this large increase (177) was the result of clearing only a small portion of the watershed. From Table we note that 17,800 has have been cleared, which is 18.2% of the area. Thus, erosion and sedimentation can and will multiply may more times if land clearing continues at the present rate.

^{1/} Reservoir area at mean low water (elevation 64.0 m or 210 ft.) was used.

As of 1978, sedimentation had reduced the total storage capacity of Lake Alajuela to 94.1 percent of the original value, a 5.9% loss. Although this is not a high percentage, water storage in the Panama Canal system is already inadequate at times, affecting canal operations, and further losses of storage could have serious effects. Assuming that deforestation continues indefinitely at the present rate and that sediment yield increases proportionately, projections were made of future cumulative losses in total storage, as follows:

Year 2000: 22.6% Year 2020: 46.4% Year 2040: 81.3%

The proposed watershed management project is expected to greatly reduce these storage losses. The program is designed to preserve existing areas of native forest and to reduce erosion on previously cleared land by reforestation, pasture management and conservation measures.

SEDIMENT YIELDS PER UNIT AREA

A table of sediment yields per unit area as affected by land use and slope was needed for planning and economic evaluation of the proposed watershed management project. This was done by (1) utilizing the observed rates of sedimentation in the reservoir and by (2) considering characteristics of the watershed in relation to the existing knowledge on factors affecting soil erosion.

First, the observed sedimentation rates were converted to sediment yields by applying the reservoir trap efficiency 2/. Using the method developed by Brune (1953), the trap efficiency for the Alajuela reservoir was found to be 93%. The mean sediment yields (total) for the predevelopment and current periods were given earlier. The corresponding sediment yields per unit area of the watershed were 10.1 m /ha/yr. and 28.0 m /ha/yr., respectively:

The first of these figures, 10.1 m³/ha/yr. is the sediment yield per unit area for native fbrest over the 39-year period, 1934 to 1973. This corresponds to 10.5 tonnes/ha/yr (about the same numerical value), using the estimated specific weight for the sediment in the reservoir, which was 1.04 tonnes/m³ (65 lbs./ft.³). This sediment yield appears to be a rather high value for native forest, but should be reliable, being an observed value (in terms of sediment volume) over a long period. Factors influencing this rate are the high land slopes and heavy rainfall and the fact that it includes sediment generated

AND STATE OF THE S

^{1/} Original total storage (active storage plus dead storage) was 799.8×10^6 m³. Sediment deposition occurs in both the active storage and dead storage zones.

^{2/} Defined as the ratio of sediment deposited in a lake or reservoir to the amount delivered to it (sediment yield).

ANEXO D

Características de las subcuencas de los ríos con estación hidrométrica Lista de Cuadros

- Cuadro D.1. Características físicas
- Cuadro D.2. Rango de pendientes
- Cuadro D.3. Distribución de la cobertura vegetal
- Cuadro D.4. Lluvia promedio de las subcuencas de los embalses Alhajuela y Gatún.

CUADRO D.1 Características físicas

Subcuenca/Estación	Ubic	Jbicación	Área de drenaje	Pendiente media	Longitud de cauce principal	Densidad de drenaje
	Latitud	Longitud	(km^2)	(%)	(km)	(km/km ²)
Río Chagres/Chico	09° 15' 49" N	79° 30' 35" O	414	26	48.3	2.22
Río Pequení/Candelaria	09° 22' 58" N	79° 30' 59" O	135	47	26.5	2.27
Río Boqueron/Peluca	09° 22' 48" N	79° 33′ 40″ O	91	47	22.3	1.99
Río Gatún/Ciento	09° 17' 52" N	79° 43' 41" O	117	37	36.5	2.26
Río Trinidad/El Chorro	08° 58' 32" N	79° 59' 25" O	174	26	46.9	1.44
Río Cirí Grande/Los Cañones	08° 56' 56" N	80° 03' 45" O	186	23	42.7	1.34
Río Caño Quebrado/ Caño Quebrado Abajo	09° 00' 17" N	79° 49' 34" O	29	10	19.7	1.96
Lago Alhajuela Área de aportes de sedimentos (km²) Área medida (km²) Área no medida (km²) % Área medida	(km²)	976 640 336 66	9099			
Lago Gatún Área de aportes de sedimentos (km²) Área medida (km²) Área no medida (km²) % Área medida	(km²)	1878 544 1334 29	8 4 4 0			

CUADRO D.2 Rango de pendientes de las subcuencas de los ríos hasta las estaciones hidrométricas

					Rango de pendientes	pendientes				
	Suave	ıve	Moderada	rada	Pronunciada	nciada	Muy Pronunciada	unciada	Escarpada	oada
	0 - 12 %	2 %	13 - 2	13 - 25 %	26 - 50 %	% 09	51 - 75 %	.2 %	% 9 <i>L</i> <	%
	km²	%	km ²	%	km ²	%	km ²	%	km²	%
Río Chagres/Chico	33.0	8.0	95.7	23.1	229.0	55.3	53.5	12.9	2.8	0.7
Río Pequení/Candelaria	21.7	16.0	41.6	30.8	58.3	43.2	12.1	6.8	1.3	1.0
Río Boqueron/Peluca	12.8	14.0	24.4	26.9	41.6	45.8	10.7	11.8	4.1	1.5
Río Gatún/Ciento	16.1	13.7	37.5	32.0	52.6	44.9	6.6	8.5	1.0	0.8
Río Trinidad/El Chorro	34.7	19.9	57.9	33.3	64.1	36.8	15.6	9.0	1.7	1.0
Río Cirí Grande/Los Cañones	50.6	27.2	59.9	32.2	9.09	32.6	13.0	7.0	1.9	1.0
Río Caño Quebrado/ Caño Quebrado Abajo	50.8	75.5	14.8	22.0	1.7	2.6	0.0	0.0	0.0	0.0

CUADRO D.3 Distribución de la cobertura vegetal de las subcuencas de los ríos hasta las estaciones hidrométricas

Subcuenca/Estación	Bosques maduros	nes	Bosc	Bosques secundarios	Matorrales y rastrojos	ales y ojos	Paja canalera	ja Iera	Pastizales	ales	Suelos sin vegetación	s sin ación	Áreas urbanas	as nas	Plantaciones forestales	siones ales	Cultivos	so,
	km^2	%	km^2	%	km^2	%	km^2	%	km^2	%	km^2	%	km^2	%	km^2	%	km^2	%
Río Chagres/Chico	391.3 94.5	94.5	16.0	3.9	5.3	1.3	0.7	0.2	9.0	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0:0
Río Pequení/Candelaria	126.7 93.9	93.9	6.5	8.8	4 .	1.0	0.1	0.1	0.2	0.2	0.0	0:0	0.0	0:0	0.0	0.0	0.0	0.0
Río Boquerón/Peluca	54.4	59.8	25.0	27.5	8.9	8.6	[:	1.2	1.5	1.6	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Río Gatún/Ciento	33.3	28.4	34.7	29.7	29.7	25.4	4.7	4.0	12.4	10.6	0.2	0.2	0.1	0.1	1.9	9.1	0.0	0.0
Río Trinidad/El Chorro	3.8	2.2	35.3	20.3	49.1	28.2	0.0	0.0	83.4	47.9	0.0	0.0	2.5	1.5	0.0	0.0	0.0	0.0
Río Cirí Grande/Los Cañones	6.0	0.5	35.4	19.0	26.0	30.1	0:0	0.0	93.7	50.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Río Caño Quebrado/ Caño Quebrado Abajo	0.1	0.1	4.0	5.9	11.3 16.9	16.9	0.0	0.0	48.5	72.4	0.0	0.0	0.7	1.	0.1	0.1	2.4	3.5

CUADRO D.4 Lluvia promedio en las subcuencas de los embalses Alhajuela y Gatún (1974-1998)

\$	Subcuenca del la	igo Alhajuela	
Subcuenca/Estación	Área	Luvia promedio	Luvia promedio
	km²	mm	pulg
Chagres/Chico	414	3393	134
Pequení/Candelaria	135	4089	161
Peluca/Boquerón	91	3671	145
Área no medida	336	2566	101
Lago	50	2252	89
Total/Promedio	1026	3183	125

	Subcuenca del	lago Gatún	
Subcuenca/Estación	Área	Luvia promedio	Luvia promedio
	km²	mm	pulg
Cirí Grande/Los Cañones	186	2584	102
Trinidad/El Chorro	174	2259	89
Ciento/Gatún	117	3098	122
Área no medida	1401	2237	88
Lago	434	2366	93
Total/Promedio	2312	2334	92

Fuente: Balance hídrico superficial en la CHCP, D. Espinosa, ACP Marzo 2000.

ANEXO E

Muestreos de campo

Lista de Cuadros

- Cuadro E.1. Formato de archivos exportados de hoja de cálculo Supercal a Excel con resultados de muestreos de sedimentos suspendidos (1987-1994).
- Cuadro E.2. Ejemplo del procesamiento de información básica de caudales líquidos y sólidos instantáneos de muestreos por Observadores Particulares (1987-2007).
- Cuadro E.3. Ejemplo del procesamiento de información básica de caudales líquidos y sólidos instantáneos de muestreos por Técnicos Hidrólogos (1987-2007).
- Cuadro E.4. Resumen de la información básica de caudales líquidos y sólidos instantáneos (1987-2007).

Lista de Gráficas

Gráfica E.1. Verticales de muestreo de sedimentos suspendidos según EDI y elevación en la estación Ciento.

CUADRO E.1 PANAMA CANAL COMMISSION METEOROLOGICAL AND HYDROGRAPHIC BRANCH

OPERATIONS SECTION, SEDIMENT LAB TOTAL SUSPENDED SOLID TEST RESULTS

SPECIMEN: M&H WATER SAMPLES

DATE THIS REPORT:02/OCT/95

DATE OF TESTING:SEPTEMBER 20,1995

PAGE 1

TESTED BY: ROSENDO MORENO

	RIVER	STATION	DATE	TIME	SAMPLER	W1 g	VOL ml	xW2 g	mg(ss)/l
1	TRINIDAD	CHORRO	05/08/95	06:00	A.GOMEZ	1257	29	1342	293.1
2	TRINIDAD	CHORRO	05/08/95	07:00	A.GOMEZ	1258	34	1343	250.0
3	TRINIDAD	CHORRO	05/08/95	08:00	A.GOMEZ	1267	43	1382	267.4
4	TRINIDAD	CHORRO	05/08/95	09:00	A.GOMEZ	1256	45	1377	268.9
5	TRINIDAD	CHORRO	09/08/95	19:00	A.GOMEZ	1246	39	1433	479.5
6	TRINIDAD	CHORRO	09/08/95	20:00	A.GOMEZ	1259	36	1402	397.2
7	TRINIDAD	CHORRO	09/08/95	21:00	A.GOMEZ	1256	34	1389	391.2
8	TRINIDAD	CHORRO	09/08/95	22:00	A.GOMEZ	1252	34	1390	405.9
9	TRINIDAD	CHR S.V 1/1 0+80	11/08/95	10:18	C.ABADIA	1262	87	1300	43.7
10	TRINIDAD	CHR EDI 1/4 0+92	11/08/95	10:15	C.ABADIA	1255	92	1307	56.5
11	TRINIDAD	CHR EDI 2/4 0+77	11/08/95	10:20	C.ABADIA	1258	95	1300	44.2
12	TRINIDAD	CHR EDI 3/4 0+63	11/08/95	10:24	C.ABADIA	1262	96	1305	44.8
13	TRINIDAD	CHR EDI 4/4 0+45	11/08/95	10:30	C.ABADIA	1258	94	1303	47.9
14	TRINIDAD	CHORRO	14/08/95	16:00	A.GOMEZ	1258	20	1350	460.0
15	TRINIDAD	CHORRO	14/08/95	17:00	A.GOMEZ	1265	20	1361	480.0
16	TRINIDAD	CHORRO	14/08/95	18:00	A.GOMEZ	1257	16	1338	506.3
17	TRINIDAD	CHORRO	14/08/95	19:00	A.GOMEZ	1265	18	1342	427.8
18	TRINIDAD	CHORRO	14/08/95	20:00	A.GOMEZ	1264	21	1368	495.2
19	TRINIDAD	CHORRO	14/08/95	21:00	A.GOMEZ	1262	19	1349	457.9
20	TRINIDAD	CHORRO	14/08/95	22:00	A.GOMEZ	1253	19	1341	463.2
21	TRINIDAD	CHORRO	14/08/95	23:00	A.GOMEZ	1263	18	1351	488.9
22	TRINIDAD	CHORRO	15/08/95	17:00	A.GOMEZ	1267	27	1321	200.0
23	TRINIDAD	CHORRO	15/08/95	18:00	A.GOMEZ	1258	33	1330	218.2
24	TRINIDAD	CHORRO	15/08/95	19:00	A.GOMEZ	1258	43	1347	207.0
25	TRINIDAD	CHORRO	15/08/95	20:00	A.GOMEZ	1251	53	1336	160.4
26	TRINIDAD	CHORRO	15/08/95	21:00	A.GOMEZ	1251	37	1308	154.1
27	TRINIDAD	CHORRO	16/08/95	16:00	A.GOMEZ	1267	42	1324	135.7
28	TRINIDAD	CHORRO	16/08/95	17:00	A.GOMEZ	1252	48	1321	143.8
29	TRINIDAD	CHORRO	24/08/95	17:00	A.GOMEZ	1256	58	1338	141.4
30	TRINIDAD	CHORRO	24/08/95	18:00	A.GOMEZ	1256	47	1319	134.0
31	TRINIDAD	CHORRO	24/08/95	19:00	A.GOMEZ	1254	23	1384	565.2
32	TRINIDAD	CHORRO	24/08/95	20:00	A.GOMEZ	1251	18	1347	533.3
33	TRINIDAD	CHORRO	25/08/95	18:00	A.GOMEZ	1263	17	1355	541.2
34	TRINIDAD	CHORRO	25/08/95	19:00	A.GOMEZ	1254	18	1362	600.0
35	TRINIDAD	CHORRO	25/08/95	20:00	A.GOMEZ	1256	23	1391	587.0
36	TRINIDAD	CHORRO	25/08/95	21:00	A.GOMEZ	1262	25	1415	612.0
37	TRINIDAD	CHORRO	27/08/95	15:00	A.GOMEZ	1258	28	1374	414.3
38	TRINIDAD	CHORRO	27/08/95	16:00	A.GOMEZ	1252	34	1400	435.3
39	TRINIDAD	CHORRO	27/08/95	17:00	A.GOMEZ	1258	26	1374	446.2
40	TRINIDAD	CHORRO	27/08/95	18:00	A.GOMEZ	1262	23	1363	439.1
49									

CUADRO E.2
Información básica de caudales líquidos y de sedimentos suspendidos instantáneos.
Río Trinidad en estación El Chorro, periodo 1987-2007
Muestras tomadas por el Observador Particular (OP)

				por ei Obse				
No.	Fecha	Hora	Css SV	Css Sección		Q	Q	Q _s
	de Muestreo		mg/l	mg/l	(pies)	(pie ³ /s)	(m ³ /s)	(t/d)
1	16-Ene-87	17:12	3.3	3.7	99.64	82.93	2.35	0.8
2	18-Ene-87	09:53	4.9	5.5	99.64	82.93	2.35	1.1
3	20-Ene-87	08:56	0.4	0.5	99.61	78.82	2.23	0.1
4	22-Ene-87	08:45	10.5	11.5	99.58	74.84	2.12	2.1
5	24-Ene-87	10:33	3.5	3.9	99.57	73.55	2.08	0.7
6	26-Ene-87	10:33	7.7	8.5	99.56	72.27	2.05	1.5
7	28-Ene-87	10:45	6.2	6.9	99.52	67.31	1.91	1.1
8	30-Ene-87	12:39	7.4	8.2	99.58	74.84	2.12	1.5
9	01-Feb-87	10:38	1.3	1.5	99.53	68.53	1.94	0.2
10	03-Feb-87	10:15	10.6	11.6	99.52	67.31	1.91	1.9
10								
3800	05-Dic-04	08:00	296.8	279.3	100.47	231	6.55	158
3801	12-Dic-04	08:00	4.2	4.4	100.47	195	5.51	2.09
3802	17-Dic-04	08:00	7.5	7.5	100.57	263	7.45	4.81
3803	23-Dic-04	08:00	4.6	4.7	100.37	203 151	4.28	1.75
3804								
	15-May-06	11:02	11.0	16.2	99.71	65.1	1.84	2.58
3805	30-May-06	07:54	16.1	22.6	99.94	97.8	2.77	5.41
3806	04-Jun-06	17:40	1560.4	1239.6	101.36	588	16.64	1782
3807	16-Jun-06	08:05	512.1	467.4	100.59	254	7.18	290
3808	30-Jun-06	08:37	10.2	15.2	100.04	115	3.26	4.28
3809	04-Jul-06	16:36	515.2	469.9	103.00	1664	47.11	1913
3810	30-Sep-06	07:38	129.8	140.6	100.67	284	8.04	97.6
3811	15-Oct-06	17:07	31.8	41.0	100.38	192	5.43	19.3
3812	30-Oct-06	16:18	192.2	192.2	101.55	687	19.45	323
3813	30-Oct-06	16:26	156.8	156.8	101.44	628	17.78	241
3814	17-Nov-06	09:46	21.9	21.9	100.44	209	5.91	11.2
3815	18-Nov-06	16:45	1091.4	1091.4	103.10	1745	49.40	4658
3816	18-Nov-06	16:56	1061.7	1061.7	103.22	1851	52.42	4808
3817	15-Abr-07	08:15	12.1	14.6	99.55	43.6	1.23	1.56
3818	27-Abr-07	17:19	150.0	146.4	100.39	194	5.48	69.3
3819	30-Abr-07	17:10	51.4	52.2	99.72	63.5	1.80	8.11
3820	15-Jun-07	16:30	9.0	11.7	100.34	181	5.14	5.18
3821	07-Ago-07	03:45	315.9	304.9	101.13	480	13.6	358
3822	10-Ago-07	02:10	1284.9	1230.9	100.80	332	9.39	998
3823	10-Ago-07	02:13	1168.5	1119.7	100.80	332	9.39	908
3824	10-Ago-07	02:21	1807.4	1730.2	100.80	330	9.34	1397
3825	10-Ago-07	02:30	2123.2	2032.0	100.79	328	9.27	1628
3826	31-Ago-07	02:30	10.2	12.8	100.73	217	6.15	6.81
3827	03-Oct-07	16:45	462.2	444.7	103.26	1882	53.3	2048
3828	05-Oct-07	15:32	1785.3	1709.1	100.78	323	9.15	1351
3829		15:36	1099.7	1053.9		323	9.13	830
	05-Oct-07				100.78			
3830	05-Oct-07	15:54	1204.6	1154.2	100.77	320	9.05	903
3831	05-Oct-07	15:58	1162.2	1113.7	100.77	320	9.05	871
3832	23-Oct-07	04:03	434.1	417.9	101.79	825	23.4	844
3833	23-Oct-07	04:08	403.2	388.4	101.78	817	23.1	776
3834	27-Oct-07	09:43	854.2	819.3	103.99	2593	73.4	5199
3835	27-Oct-07	09:45	745.3	715.3	104.00	2609	73.9	4566
	_							
Estadís	tica Básica							
No. de da	tos		3835	3835	3835	3835	3835	3835
Promedio			238.9	240.3	101.08	692	19.6	830
Mediana			113.8	118.3	100.80	376	10.6	115
Minimo			0.3	0.4	98.85	14.6	0.414	0.039
Maximo			4229.5	4065.4	110.43	14525	411	54152
	n estandar		338.0	332.4	1.37	1119	31.7	2705
	te de variación		1.4	1.4	0.01	1.6	1.6	3.3

Css SV: concentración de sedimentos suspendidos en vertical representativa de la sección de aforo. Css Sección: concentración promedio de sedimentos suspendidos en la sección de aforo.

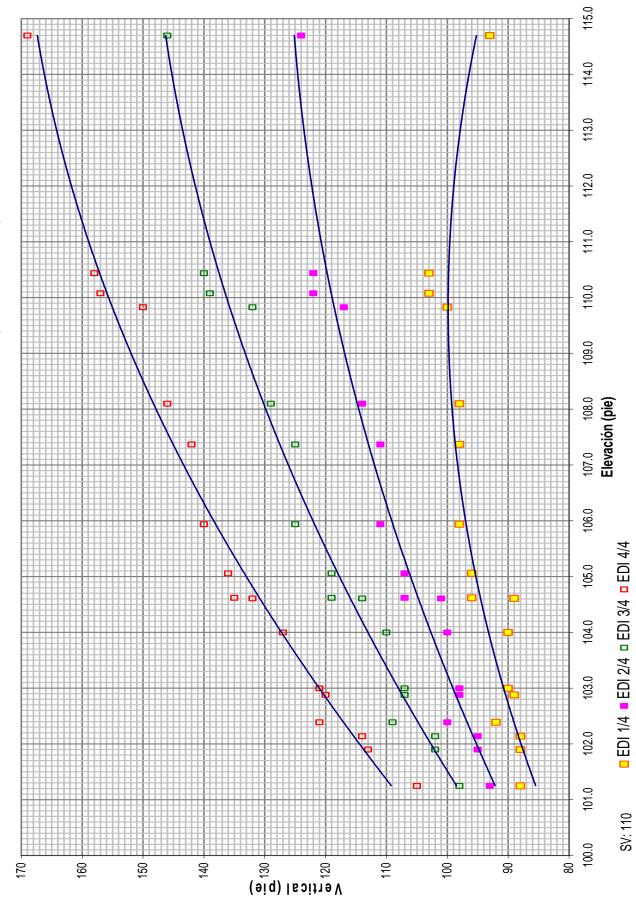
Qs: caudal de sedimentos suspendidos instantáneo.

CUADRO E.3
Información básica de caudales líquidos y de sedimentos suspendidos instantáneos.
Río Trinidad en estación El Chorro (periodo 1987-2007)
Muestras tomadas por el Técnico Hidrólogo (TH).

					CHICO HIGH			
No.	Fecha	Hora	Css SV	Css Sección	Elevación	Q	Q	Q_s
	de Muestreo		mg/l	mg/l	(pies)	(pie ³ /s)	(m ³ /s)	(t/d)
1	28-Ene-87	12:38		10.4	99.52	67.3	1.91	1.70
2	11-Feb-87	12:30		2.5	99.50	64.9	1.84	0.389
3	10-Mar-87	10:15		1.2	99.24	38.9	1.10	0.114
4		11:25		1.9	99.36	49.8	1.41	0.234
	05-May-87							
5	29-Jul-87	11:20		13.3	99.60	77.5	2.19	2.52
6	14-Ago-87	11:05		9.9	100.28	208	5.89	5.02
7	03-Sep-87	12:30		14.1	100.41	245	6.92	8.40
8	28-Sep-87	15:44		70.0	100.43	250	7.09	42.8
9	30-Sep-87	12:00		2994.2	100.91	420	11.9	3080
10	08-Dic-87	11:15		3.4	100.30	214	6.06	1.75
138	07-Sep-04	12:12		66.0	100.22	165	4.66	26.6
139	06-Oct-04	12:25		18.6	100.22	156	4.42	7.11
140	08-Jun-05	11:41		11.9	100.10	139	3.93	4.04
141	12-Jul-05	11:32		3.2	99.82	88.6	2.51	0.694
142	18-Nov-05	12:35		15.9	100.58	265	7.51	10.3
143	11-Ene-06	10:53		1.1	99.85	83.8	2.37	0.226
144	06-Feb-06	11:33		7.3	99.89	90.1	2.55	1.61
145	20-Mar-06	11:50		6.0	99.28	26.3	0.744	0.386
146	04-Abr-06	11:10		2.4	99.29	27.1	0.768	0.156
147	04-May-06	10:33		6.5	99.43	36.8	1.04	0.585
148	09-Jun-06	11:20		91.6	100.51	229	6.49	51.4
149	01-Ago-06	11:50		8.0	100.56	245	6.94	4.76
150	15-Ago-06	10:35		9.6	100.45	210	5.96	4.92
151	06-Sep-06	10:33		9.1	100.49	368	10.4	8.18
152	10-Oct-06	11:49		5.6		143	4.06	1.96
					100.18			
153	24-Oct-06	10:42		4.7	100.22	152	4.31	1.75
154	24-Oct-06	14:50		27.4	100.58	253	7.15	16.9
155	25-Oct-06	10:20		26.0	100.31	174	4.92	11.1
156	26-Oct-06	12:50		13.6	100.22	152	4.31	5.06
157	27-Oct-06	09:48		13.9	100.41	200	5.67	6.79
158	01-Nov-06	11:03		10.2	100.21	150	4.25	3.73
159	06-Dic-06	11:48		19.8	100.87	360	10.2	17.4
160	02-Ene-07	11:28		16.3	100.27	164	4.64	6.54
161	06-Feb-07	11:09		8.4	99.64	53.5	1.52	1.10
162	15-Feb-07	12:03		8.7	99.55	43.6	1.23	0.932
163	01-Mar-07	12:04		6.8	99.52	40.6	1.15	0.677
164		11:06		37.7	99.59	47.4	1.34	4.37
	12-Abr-07							
165	10-May-07	12:15		329.1	101.49	656	18.6	528
166	08-Jun-07	12:43		34.4	100.38	192	5.42	16.1
167	17-Jul-07	10:49		26.1	100.68	286	8.09	18.3
168	03-Ago-07	11:25		20.0	100.40	198	5.61	9.70
169	05-Sep-07	11:14		17.6	100.54	239	6.76	10.3
170	02-Oct-07	14:05		135.8	101.23	525	14.9	174
171	03-Oct-07	17:55		629.7	102.05	987	28.0	1521
172	04-Oct-07	14:44		34.5	101.01	424	12.0	35.8
173	13-Dic-07	11:36		685.9	103.32	1932	54.7	3242
Fetadíet	ica Básica							
				173	173	173	170	173
No. de dat	U3						173	
Promedio				65.3	100.18	231	6.53	121
Mediana				10.2	100.18	160	4.53	4.37
Minimo				0.3	98.88	16.0	0.452	0.046
Maximo				2994.2	104.04	2660	75.3	6691
Desviacion	n estandar			258.8	0.73	293	8.30	632
Coeficiente	e de variación			4.0	0.01	1.3	1.3	5.2

Css SV: concentración de sedimentos suspendidos en vertical representativa de la sección de aforo. Css Sección: concentración promedio de sedimentos suspendidos en la sección de aforo.

Qs: caudal de sedimentos suspendidos instantáneo.


Resumen de la información básica de caudales líquidos y de sedimentos suspendidos instantáneos (1987-2007). **CUADRO E.4**

:	-	-	Q (m ³ /s)	³ /s)	Css	Css (mg/l)	Qs	Qs (t/d)
Estacion	Colector	No. de datos	Min	Max	Min	Max	Min	Max
Chico	OP	3561	4.30	1984	0.3	10835.3	0.417	1644754
	픋	142	5:35	485	0.3	2843.4	0.147	119126
Candelaria	ОР	4240	1.32	1138	0.3	7780.7	0.082	296807
	픋	142	1.32	1080	0.3	4044.4	0.029	353618
Peluca	ОР	4517	0.435	828	0.3	7709.2	0.049	318038
	폰	81	0.508	355	0.3	1968.8	0.011	60401
Ciento	ОР	5240	0.146	416	0.3	4980.0	0.029	96981
	폰	169	0.702	172	0.3	1572.9	0.042	17757
El Chorro	ОР	3835	0.414	411	0.4	4065.4	0.039	54152
	폰	173	0.452	75.3	0.3	2994.2	0.046	6691
Los Cañones*	ОР	4694	0.388	396	0.4	2504.3	0.072	12769
	픋	121	0.783	341	0.5	1387.1	0.250	38560
Caño Quebrado**	ОР	96	0.137	35.4	2.6	429.8	0.068	1191
	픋	40	0.150	6.41	2.6	193.8	0.074	50.2
* A nartir de noviembre de 2004 se cambió el sitio de mira a l os Chorritos	20 as 2004 ap a	ambió el sitio de mir	a a Los Chorr	itos				

^{*} A partir de noviembre de 2004 se cambió el sitio de mira a Los Chorritos ** Registros a partir de 2003.

Total	898	26183
	프	OP

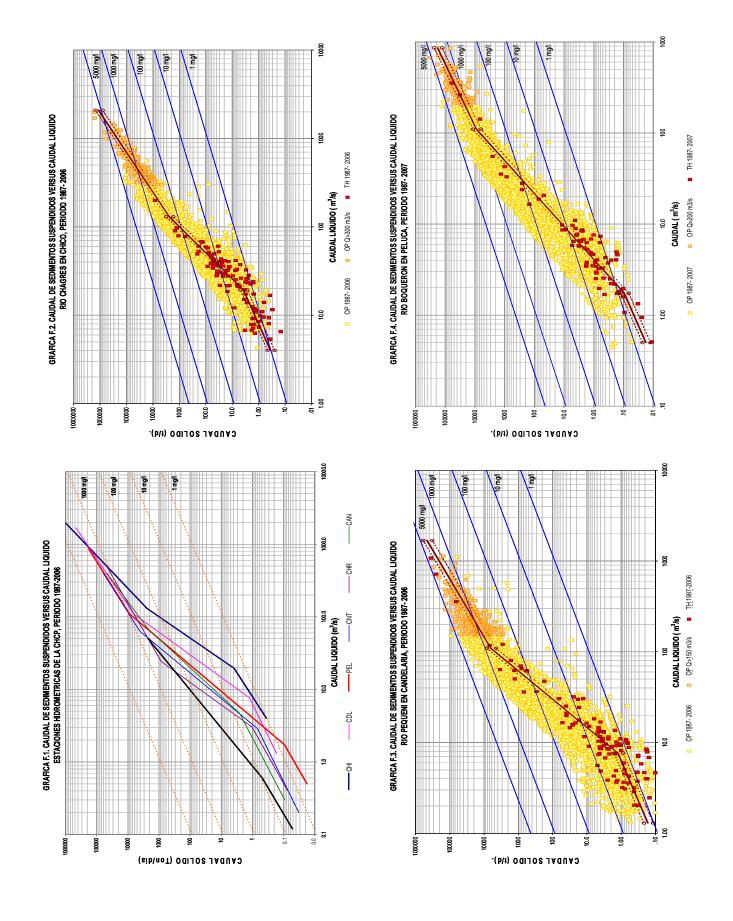
Gráfica E.1. Verticales de muestreo de sedimentos (estación Ciento)

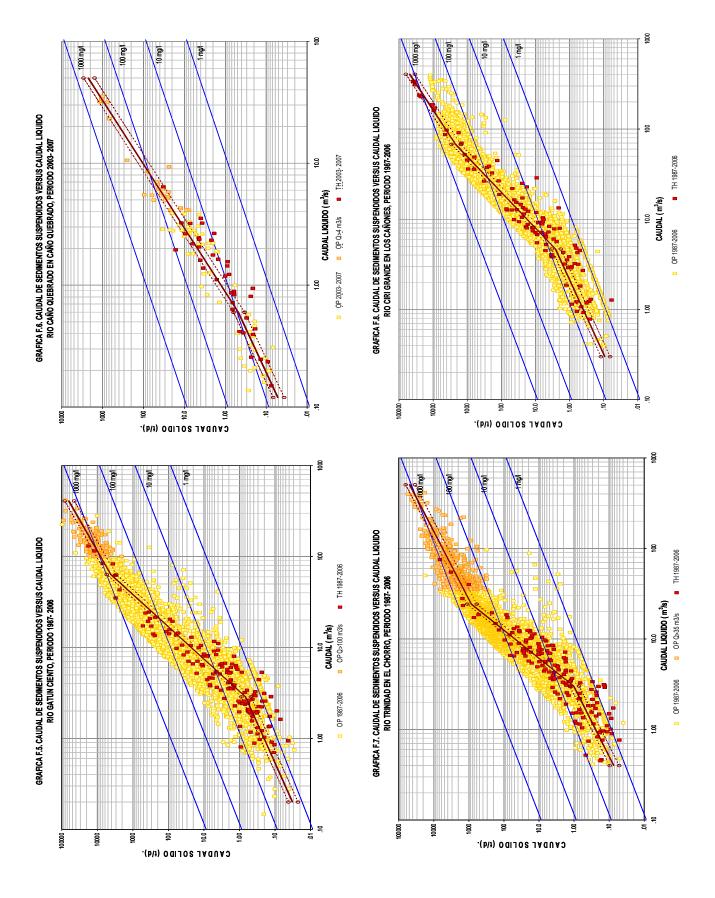
ANEXO F

Curvas de descargas de sedimentos suspendidos

Lista de Cuadros

- Cuadro F.1. Ecuaciones de las curvas de descargas de sedimentos suspendidos de las estaciones hidrométricas de la CHCP (1987-2006).
- Cuadro F.2. Ecuaciones de las curvas de descargas de sedimentos suspendidos de las estaciones hidrométricas de la CHCP (2007).


Lista de Gráficas


- Gráfica F.1. Curvas de descargas de sedimentos suspendidos de las estaciones hidrométricas de la CHCP (1987-2006).
- Gráfica F.2. Curva de descarga de sedimentos suspendidos del río Chagres en Chico (1987-2006).
- Gráfica F.3. Curva de descarga de sedimentos suspendidos del río Pequení en Candelaria (1987-2006).
- Gráfica F.4. Curva de descarga de sedimentos suspendidos del río Boquerón en Peluca (1987-2006).
- Gráfica F.5. Curva de descarga de sedimentos suspendidos del río Gatún en Ciento (1987-2006).
- Gráfica F.6. Curva de descarga de sedimentos suspendidos del río Caño Quebrado en Caño Quebrado Abajo (2003-2007).
- Gráfica F.7. Curva de descarga de sedimentos suspendidos del río Trinidad en El Chorro (1987-2006).
- Gráfica F.8. Curva de descarga de sedimentos suspendidos del río Cirí Grande en Los Cañones (1987-2007).

CUADRO F.1 Ecuaciones de las curvas de descargas de sedimentos suspendidos de las estaciones hidrométricas de la CHCP

CUADRO F.2 Ecuaciones de las curvas de descargas de sedimentos suspendidos de las estaciones hidrométricas de la CHCP 2007

		2007	
Estación	Río	Caudal (Q) (m³/s)	Caudal de sedimentos suspendidos (Qs) (t/d)
01-Los Cañones	Cirí Grande	0.00 - 1.67 1.67 - 34.8 34.8 - 405	$Qs = 0.3727 Q^{1.1106}$ $Qs = 0.2034 Q^{2.2937}$ $Qs = 1.5209 Q^{1.7268}$
02-El Chorro	Trinidad	0.00 - 2.78 2.78 - 33.8 33.8 - 506	$Qs = 0.5789 Q^{1.3911}$ $Qs = 0.1842 Q^{2.5129}$ $Qs = 13.837 Q^{1.2855}$
03-Caño Quebrado	Caño Quebrado	0.00 - 0.600	$Qs = 0.9782 Q^{1.3828}$ $Qs = 1.2802 Q^{1.9097}$
04-Ciento	Gatún	0.00 - 3.08 3.08 - 40.1 40.1 - 409	$Qs = 0.3517 Q^{1.2048}$ $Qs = 0.0577 Q^{2.8127}$ $Qs = 7.1449 Q^{1.5071}$
05-Peluca	Boquerón	0.00 - 1.74 1.74 - 115 115 - 861	$Qs = 0.0450 Q^{1.3379}$ $Qs = 0.0204 Q^{2.7623}$ $Qs = 11.0171 Q^{1.4355}$
06-Candelaria	Pequení	0.00 - 5.75 5.75 - 98.8 98.8 - 1686	$Qs = 0.2171 Q^{1.2038}$ $Qs = 0.0128 Q^{2.8219}$ $Qs = 4.7982 Q^{1.5316}$
07-Chico	Chagres	0.00 - 27.2 27.2 - 299 299 - 2085	$Q_S = 0.1129 Q^{1.7862}$ $Q_S = 0.0031 Q^{2.8752}$ $Q_S = 1.7036 Q^{1.7686}$

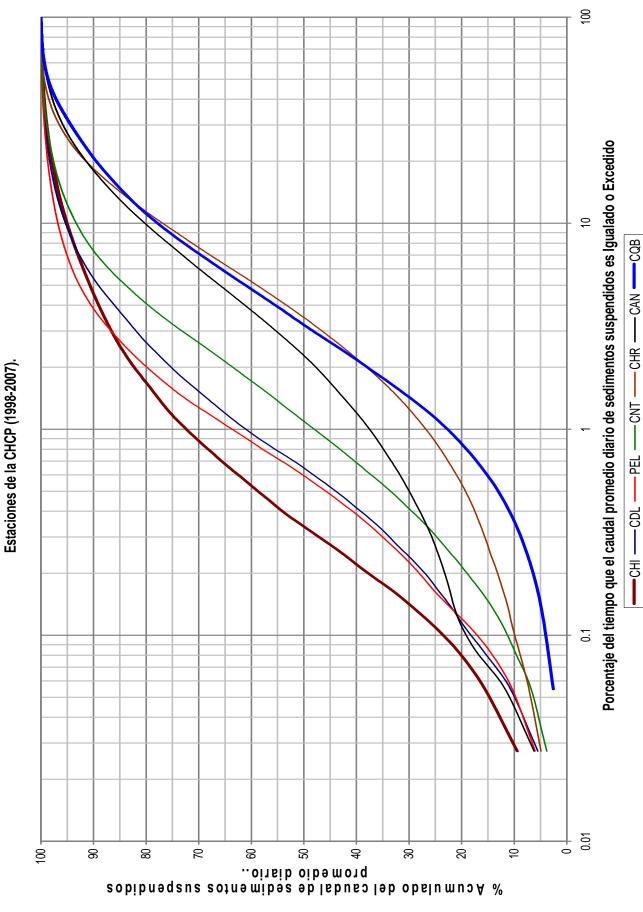
ANEXO G

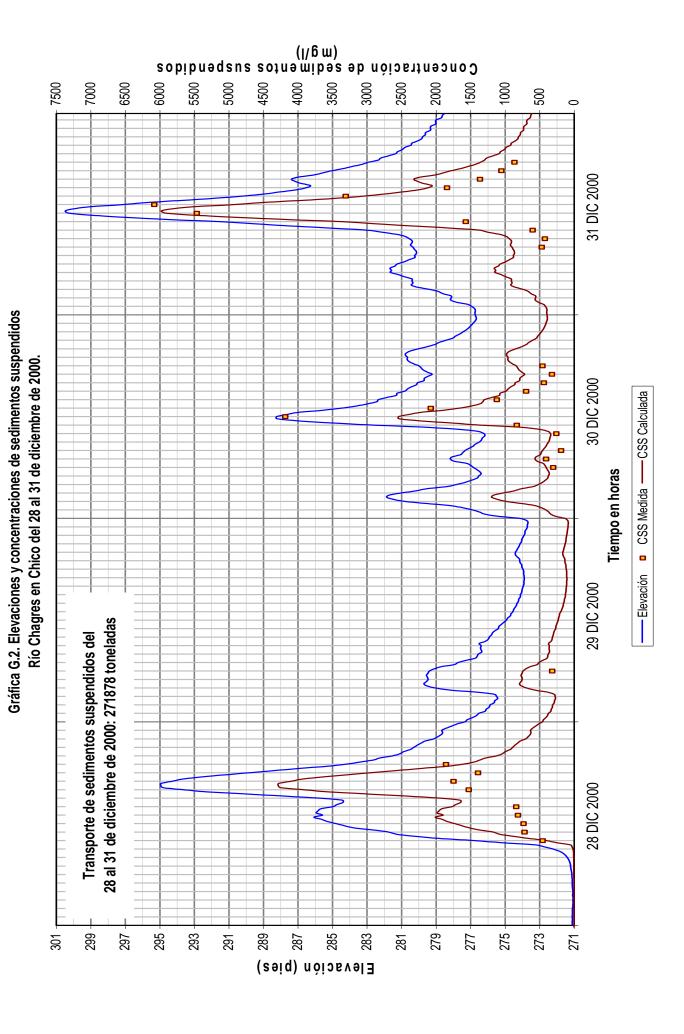
Curva de duración acumulada de caudales promedios diarios de sedimentos suspendidos

Lista de Cuadros

Cuadro G.1. Resumen de las curvas de duración acumulada de caudales promedios diarios de sedimentos suspendidos de las estaciones hidrométricas de la CHCP (1998-2007).

Lista de Gráficas


Gráfica G.1. Curvas de duración acumulada de caudales promedios diarios de sedimentos suspendidos de las estaciones hidrométricas de la CHCP (1998-2007).


Gráfica G.2. Elevaciones y concentraciones de sedimentos suspendidos de la crecida del 28 al 31 de diciembre de 2000 registrada en la estación Chico en el río Chagres.

Cuadro G.1. Resumen de las curvas de duración acumulada de caudales promedios diarios de sedimentos suspendidos. Periodo 1998-2007

Ļ		Porceni	taje del ca	audal pror	nedio de s	sedimento	s suspend	orcentaje del caudal promedio de sedimentos suspendidos acumulado que es igualado o excedido:	nulado qu	ıe es igua	lado o exc	edido:
Subcuenca/Estacion	Periodo	0.05%	0.1%	1%	2%	10%	25%	20%	75%	%06	95%	%66
		Qs (%)	Qs (%)	Qs (%)	Qs (%)	Os (%)	Qs (%)	Qs (%)	Qs (%)	Qs (%)	Qs (%)	Qs (%)
Chagres / Chico	1998-2007	14.5	23.4	72.4	2.06	95.0	98.5	2.66	6.66	100.0	100.0	100.0
Pequeni / Candelaria	1998-2007	8.6	18.1	61.0	89.1	95.3	98.9	2.66	6.66	100.0	100.0	100.0
Boqueron / Peluca	1998-2007	9.6	17.0	63.6	92.7	96.8	99.1	8.66	100.0	100.0	100.0	100.0
Gatún / Ciento	1998-2007	6.3	11.2	48.0	83.9	93.3	98.4	2.66	6.66	100.0	100.0	100.0
Trinidad / El Chorro	1998-2007	8.9	8.6	26.8	58.9	76.9	94.6	99.4	6.66	100.0	100.0	100.0
Ciri Grande / Los Cañones 1998-2007	1998-2007	10.8	18.9	37.5	0.99	80.2	94.1	8.86	8.66	100.0	100.0	100.0
Caño Quebrado/CQB Abajo 2003-2007	2003-2007	3.0	3.9	22.7	61.1	77.8	92.3	98.7	8.66	100.0	100.0	100.0

Gráfica G.1. Curva de duración acumulada de caudales promedios diarios de sedimentos suspendidos

ANEXO H

Caudales mensuales, anuales y producción de sedimentos suspendidos

Lista de Cuadros

- Cuadro H.1. Caudal mensual, anual y producción de sedimentos en la estación Los Cañones en el río Cirí Grande (1998-2007).
- Cuadro H.2. Caudal mensual, anual y producción de sedimentos en la estación El Chorro en el río Trinidad (1998-2007).
- Cuadro H.3. Caudal mensual, anual y producción de sedimentos en la estación Caño Quebrado Abajo en el río caño Quebrado (2003-2007).
- Cuadro H.4 Caudal mensual, anual y producción de sedimentos en la estación Ciento en el río Gatún (1998-2007).
- Cuadro H.5 Caudal mensual, anual y producción de sedimentos en la estación Peluca en el río Boquerón (1998-2007).
- Cuadro H.6 Caudal mensual, anual y producción de sedimentos en la estación Candelaria en el río Pequení (1998-2007).
- Cuadro H.7 Caudal mensual, anual y producción de sedimentos en la estación Chico en el río Chagres (1998-2007).

Lista de Gráficas

- Gráfica H.1. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación Los Cañones en el río Cirí Grande (1998-2007).
- Gráfica H.2. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación El Chorro en el río Trinidad (1998-2007).
- Gráfica H.3. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación Caño Quebrado Abajo en el río Caño Quebrado (2003-2007).
- Gráfica H.4. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación Ciento en el río Gatún (1998-2007).
- Gráfica H.5. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación Peluca en el río Boquerón (1998-2007).
- Gráfica H.6. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación Candelaria en el río Pequení (1998-2007).
- Gráfica H.7. Caudal mensual de sedimentos suspendidos en porcentaje del total anual en la estación Chico en el río Chagres (1998-2007).

Cuadro H.1. Caudal de sedimentos suspendidos mensual y anual Estación Los Cañones en río Cirí Grande (1998-2007)

COORDENA	COORDENADAS GEOGRÁFICAS:	RÁFICAS:		LATI.	LATITUD:		8° 56' 56" N		LONG	LONGITUD:	w	80° 03' 45" O	•	
ÁREA DE DRENAJE	RENAJE:		186	Km2										
AÑO	ENE	FEB	MAR	ABR	MAY	NOC	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL	JAL
	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(Vaño)	t/año/kr
1998	30.8	11.5	6.84	22.0	419	214	1367	<u> </u>	066	4116	604	5897	11134	59.9
1999	253	42.5	38.7	222	1021	3886	906	6656	14299	1652	7102	10474	49496	266
2000	1972	109	38.9	31.5	3086	5647	1373	1171	2046	886	3018	6134	25615	138
2001	546	35.6	24.2	14.3	188	1391	430	629	3226	4703	5426	4055	21003	113
2002	1342	43.9	29.3	2418	255	403	3280	6473	4593	8498	86608	269	54199	291
2003	51.8	23.2	13.8	68.9	1571	1146	3203	2628	4519	10777	15566	15984	25553	299
2004	141	36.4	22.8	30.1	1549	299	369	2348	1710	2272	3901	278	16320	87.7
2005	380	33.2	43.5	34.6	824	1673	268	1873	4033	4173	1082	202	14920	80.2
2006	70.4	33.7	29.9	136	362	285	3173	8226	10199	1308	25307	3883	84541	455
2007	207	30.6	13.6	85.5	10549	4361	7171	2622	5889	7315	7264	2602	56601	304
Total	4994	336	262	3062	19823	19666	21842	40762	52835	43978	130268	51490	389382	
Promedio	499	39.9	26.2	306	1982	1967	2184	4076	5284	4398	13027	5149	38938	209
%	1.28	0.10	0.07	0.79	5.09	5.05	5.61	10.5	13.6	11.3	33.5	13.2	100	

Cuadro H.2. Caudal de sedimentos suspendidos mensual y anual Estación El Chorro en río Trinidad (1998-2007)

ORDENA	COORDENADAS GEOGRÁFICAS:	RÁFICAS:		LATITU	IUD :		8° 58' 32" N		LONGITUD:	ITUD :	•	79° 59' 25" O	_	
A DE DI	ÁREA DE DRENAJE :		174	Km2										
AÑO	ENE	FEB	MAR	ABR	MAY	NNC	JUL	AGO	SEP	OCT	AON	DIC	ANUAL	JAL
	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(Vaño)	t/año/km2
1998	85.6	5.25	2.80	4.03	387	44.7	1709	2771	1562	2306	3286	5407	22496	129
1999	457	9:55	14.9	157	1818	£909	671	6220	9438	4637	12869	9260	51660	297
2000	1529	74.4	19.2	14.5	722	5188	982	2378	3108	2876	2538	2836	22269	128
2001	409	17.6	10.4	5.59	54.4	648	791	485	249	3586	4102	3629	13988	80.4
2002	818	28.6	13.9	220	191	448	3113	10310	6788	5291	15217	735	43522	250
2003	24.2	10.4	5.82	54.9	2156	1668	3460	3753	4488	16223	22002	14964	71814	413
2004	85.4	18.2	10.5	166	3782	7864	1553	3326	1662	9323	5925	378	29143	167
2005	137	19.2	14.8	18.3	2654	754	860	2796	0089	7736	2502	254	24046	138
2006	21.5	10.7	69.7	377	2129	588	9584	7444	9329	2304	36280	2663	74034	425
2007	121	25.8	14.8	148	6587	2746	4750	5211	8869	9136	4723	6313	46763	569
Total	3613	592	115	1515	20481	21308	27475	44746	49913	68418	112448	49438	399736	
Promedio	361	26.6	11.5	151	2048	2131	2748	4475	4991	6842	11245	4944	39974	230
%	06.0	0.07	0.03	0.38	5.12	5.33	6.87	11.2	12.5	17.1	28.1	12.4	100	

Cuadro H.3. Caudal de sedimentos suspendidos mensual y anual Estación Caño Quebrado Abajo en río Caño Quebrado (2003-2007)

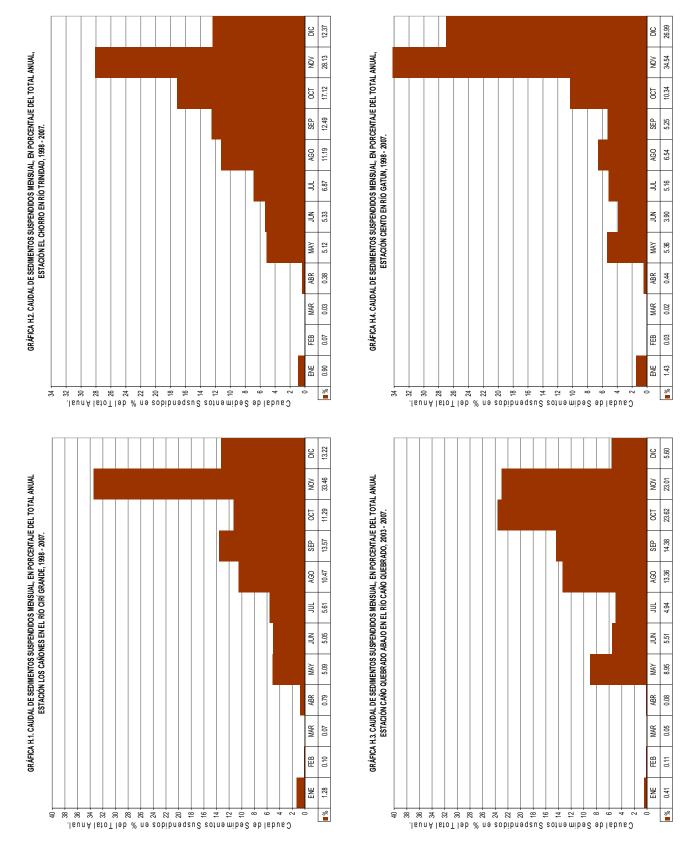
COORDENA	COORDENADAS GEOGRÁFICAS:	RÁFICAS:		LATITU	TUD :		9° 17' 52" N		LONG	LONGITUD:		79° 43' 41" O	-	
ÁREA DE DRENAJE	RENAJE:		29	Km2										
AÑO	ENE	FEB	MAR	ABR	MAY	NNC	JUL	AGO	SEP	LOO	ΛON	DIC	ANUAL	JAL
	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/año)	t/año/km2
2003	28.4	8.16	3.85	2.83	117	6:33	222	742	928	1980	1994	1311	2692	115
2004	49.6	15.8	29'9	6.88	202	231	168	1366	929	1475	1100	263	6043	90.2
2005	48.3	10.15	26.3	9.31	177	76.2	64.7	428	2117	1343	1653	0.36	6027	0.06
2006	27.7	7.95	4.62	6.94	415	174	329	2147	1447	1236	3229	247	9271	138
2007	32.8	8.11	3.29	10.38	5209	1999	1136	1470	1527	4841	2617	199	17013	254
Total	187	20	24	36	4122	2536	2274	6152	6623	10875	10593	2576	46048	
Promedio	37	10.0	2	7	824	202	455	1230	1325	2175	2119	515	9210	137
%	0.41	0.11	0.05	0.08	8.95	5.51	4.94	13.4	14.4	23.6	23.0	2.60	100	

Cuadro H.4. Caudal de sedimentos suspendidos mensual y anual Estación Ciento en río Gatún (1998-2007)

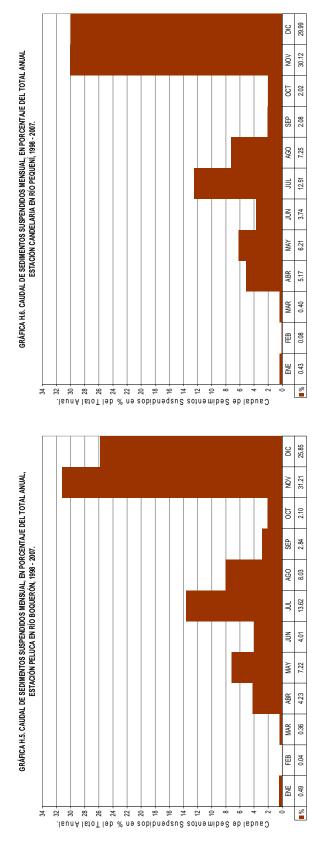
		JAL	t/año/km2	252	714	363	137	141	294	419	125	494	869		351	
		ANDAI	(t/año)	29476	83269	42448	16039	16553	34412	49001	14617	54311	70020	410446	41045	100
79° 43' 41" O		DIC	(t/mes)	9453	34498	17383	2509	282	12817	688	111	456	25667	110772	11077	27.0
•		NOV	(t/mes)	2073	15510	1156	7682	8424	8988	58799	8018	33743	32477	141750	14175	34.5
LONGITUD:		OCT	(t/mes)	3745	12075	0226	632	1802	3471	9869	373	1500	2117	42431	4243	10.3
FONG		SEP	(t/mes)	4749	1426	3213	2281	2431	2287	1168	1279	1595	1136	21564	2156	5.25
		AGO	(t/mes)	2892	2998	1217	1389	1893	1010	2083	5679	2862	1020	26834	2683	6.54
9° 17' 52" N		JUL	(t/mes)	1859	9802	546	2066	1098	2363	362	1572	2216	1983	21184	2118	5.16
		NOC	(t/mes)	1938	4678	4784	27.8	134	202	5299	163	1249	523	15999	1600	3.90
LATITUD :		MAY	(t/mes)	1718	4119	156	34.7	17.8	200	5318	185	5273	4664	22015	2201	5.36
	VMZ	ABR	(t/mes)	1034	194	6.63	4.84	51.8	9:99	13.2	173	528	1.19	1803	180	0.44
7	11,	MAR	(t/mes)	2.99	27.6	11.9	8.74	92.6	4.54	96:9	8.04	11.4	2.98	98.0	9.80	0.02
RÁFICAS:		FEB	(t/mes)	4.20	16.8	20.2	13.8	14.0	2.58	10.2	12.6	08.6	08'6	119	11.9	0.03
COORDENADAS GEOGRÁFICAS:	KENAJE :	ENE	(t/mes)	8.84	272	4224	842	368	16.2	33.7	42.3	15.3	27.6	5878	288	1.43
COORDENA	AKEA DE DRENAJE	AÑO		1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Total	Promedio	%

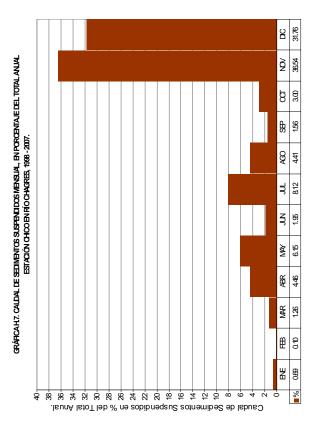
Cuadro H.5. Caudal de sedimentos suspendidos mensual y anual Estación Peluca en río Boquerón (1998-2007)

COORDENADAS GEOGRÁFICAS:	DAS GEOG	RÁFICAS:		LATI	LATITUD:		9° 22' 48" N		LONG	LONGITUD:	_	79° 33' 40" O		
ÁREA DE DRENAJE	RENAJE:		91	Km2										
AÑO	ENE	FEB	MAR	ABR	MAY	NUC	TNF	AGO	SEP	OCT	NON	DIC	ANNAL	JAL
	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/año)	t/año/kr
1998	8.30	9.08	76.	10450	1720	1800	18328	9009	1293	788	868	3358	43872	482
1999	117	117	223	3033	6423	2057	15008	2984	244	3275	2622	38789	80293	988
2000	727	24.2	9.48	35.3	1764	6751	1863	2510	93.8	1854	1273	28349	45254	497
2001	1571	5.25	3.66	5.89	352	646	8697	1367	5820	211	6124	14709	38452	423
2002	191	5.39	1195	2356	165	464	2689	6771	394	327	32115	400	50810	829
2003	3.70	2.51	1.16	75.4	459	824	183	5232	336	447	8591	7993	24147	265
2004	27.3	3.12	2.53	278	11911	9589	774	2672	2280	2615	59925	8530	101581	1116
2005	172	16.3	4.17	3938	61.8	268	3085	11324	4648	200	3068	68.2	26854	295
2006	12.3	5.03	130	3607	12625	2084	21181	5524	1294	2283	20407	320	69472	892
2007	16.0	2.35	3.39	758	110	1498	4588	2178	92.8	178	41752	47486	99261	1001
Total	2845	211	2104	24537	41896	23277	79046	46569	16496	12176	181138	150003	580298	
Promedio	285	21.1	210	2454	4190	2328	2062	4657	1650	1218	18114	15000	58030	638
%	0.49	0.04	0.36	4.23	7.22	4.01	13.6	8.03	2.84	2.10	31.2	25.8	100	


Cuadro H.6. Caudal de sedimentos suspendidos mensual y anual Estación Candelaria en río Pequení (1998-2007)

COORDENA	COORDENADAS GEOGRÁFICAS:	RÁFICAS:		LATI	LATITUD :		9° 22' 58" N		CONGITUD:	TUD:		79° 30' 59" O		
ÁREA DE DRENAJE :	RENAJE:		135	Km2										
AÑO	ENE	FEB	MAR	ABR	MAY	NNC	٦nr	AGO	SEP	OCT	ΛON	DIC	ANUAI	AL
	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/mes)	(t/año)	t/año/km2
1998	37.5	195	8.70	10114	10678	668	24939	9864	5176	208	866	13277	26896	220
1999	364	330	180	7229	5418	10172	15808	5361	948	2029	3388	75444	126732	939
2000	1488	82.9	22.6	19.1	2129	4284	3224	4254	1712	5148	1836	29680	83880	621
2001	1495	19.6	14.4	13.8	829	1948	10260	2619	3560	897	21358	23647	06899	492
2002	287	20.3	3176	14290	283	227	11627	10307	548	1654	71555	1954	116229	861
2003	20.8	11.9	7.49	230	772	816	241	18693	1628	1193	11256	21254	56122	416
2004	63.3	16.7	13.8	2058	18561	2419	531	3605	2738	1687	30986	16224	141522	1048
2005	326	36.9	23.0	5370	347	357	1414	3285	2291	520	1450	456	15906	118
2006	28.4	18.6	422	7993	19329	2638	42023	5751	1063	2200	29197	1689	118652	879
2007	9.88	29.1	22.3	3366	2499	9842	12636	7392	727	465	62809	80610	178648	1323
Total	4229	821	3891	50683	60873	36733	122703	71133	20392	19801	295482	294237	826086	
Promedio	423	82.1	389	2068	2809	3673	12270	7113	2039	1980	29548	29424	86086	727
%	0.43	0.08	0.40	5.17	6.21	3.74	12.5	7.25	2.08	2.02	30.1	30.0	100	


Cuadro H.7. Caudal de sedimentos suspendidos mensual y anual Estación Chico en río Chagres (1998-2007)



SUBCUENCAS DEL EMBALSE GATÚN

SUBCUENCAS DEL EMBALSE ALHAJUELA

Anexo I

Producción de sedimentos, volúmenes de sedimentos depositados en los lagos y tasas de sedimentación

Lista de Cuadros

- Cuadro I.1. Resumen de caudales específicos y producción de sedimentos en las estaciones hidrométricas de la CHCP (1998-2007).
- Cuadro I.2. Caudal y producción de sedimentos en la subcuenca del embalse Alhajuela para el periodo 1998-2007.
- Cuadro I.3. Caudal y producción de sedimentos en la subcuenca del embalse Gatún para el periodo 1998-2007.
- Cuadro I.4. Tasas de sedimentación en el embalse Alhajuela: estudios previos, según batimetría de 2008. y mediciones de sedimentos en ríos .
- Cuadro I.5. Volumen de sedimentos depositados y tasas de sedimentación en la subcuenca de los embalses Alhajuela (1984-1997) y Gatún (1987-1997).
- Cuadro I.6. Volumen de sedimentos depositados y tasas de sedimentación en la subcuenca de los embalses Alhajuela y Gatún, (1998-2007).
- Cuadro I.7. Cálculo de la vida media del embalse Alhajuela.
- Cuadro I.8. Cálculo de la vida media del embalse Gatún.

Lista de Gráficas

- Gráfica I.1. Producción de sedimentos suspendidos versus caudal específico (1998-2007).
- Gráfica I.2. Capacidad de almacenamiento de agua del embalse Alhajuela según tasas de sedimentación.
- Gráfica I.3. Curvas Elevación-Capacidad del embalse Alhajuela.
- Gráfica I.4. Comparación de secciones transversales: 1928, 1998 y 2008.
- Gráfica I.5. Línea base (eje norte-sur) de referencia para graficar secciones transversales en el embalse Alhajuela.

Cuadro I.1. Resumen de caudales específicos y producción de sedimentos suspendidos en las estaciones hidrométricas de la CHCP.

PERIODO: 1998 - 2007

	Subcuencas del Lago Alhajuela													
	Ch	nico	Cand	delaria	Pe	luca								
	A = 4	14 km²	A = 1	35 km²	A = 9	91 km²								
Año	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²								
1998	64.0	274	91.7	570	67.6	482								
1999	104	499	134	939	113	886								
2000	88.0	830	106	621	89.2	497								
2001	59.6	135	88.3	492	70.8	423								
2002	71.3	297	107	861	79.5	558								
2003	64.6	106	88.1	416	69.5	265								
2004	90.7	942	112	1048	107	1116								
2005	64.2	117	80.7	118	68.8	295								
2006	94.7	829	107	879	84.4	763								
2007	96.8	1635	124	1323	95.8	1091								
Promedio	79.8	566	104	727	84.5	638								

			Subcue	encas del Lago	Gatún Gatún			
1999 2000 2001 2002 2003 2004 2005	Cie	ento	EI C	horro	Los C	añones	Caño Quel	orado Abajo ¹
_	A = 1	17 km ²	A = 1	74 km ²	A = 1	86 km²	A = 6	67 km ²
Año	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²	Caudal Específico I/s/km²	Producción Sedimentos Suspendidos t/año/km²
1998	53.0	252	26.7	129.3	33.7	59.9		
1999	86.4	714	50.1	297	69.5	266		
2000	61.2	363	37.9	128	48.9	138		
2001	42.0	137	26.3	80.4	41.5	112.9		
2002	43.3	142	42.5	250	59.9	291		
2003	53.8	294	51.6	413	62.9	299	35.1	115
2004	59.6	419	36.0	168	42.8	87.7	32.7	90.2
2005	38.8	124.9	32.5	138.2	39.7	80.2	28.9	90
2006	54.3	464	47.2	425	60.6	455.0	35.2	138
2007	65.6	598	48.7	269	64.7	304	55.4	254
Promedio	55.8	351	40.0	230	52.4	209	34.6	112

¹ Promedio normalizado al periodo 1998-2007

Cuadro I.2. Caudal y producción de sedimentos en la subcuenca del embalse Alhajuela para el periodo 1998-2007.

			Qs Total	Alhajuela	MMC/año	0.368	0.694	0.619	0.297	0.396	0.288	0.795	0.196	0.716	1.12			0.549	
			Qs suspendidos	Alhajuela	(t/año/km²)	365	889	613	294	393	286	789	195	710	1109		544	626	
			Qs susp	Alha	(t/año)	356586	671220	598617	287268	383314	279065	769764	190129	692677	1082314		531095	610760	100
			Qs suspendidos	Area no medida	(t/año/km²)	365	992	375	377	278	461	407	294	480	380		418		
			Qs susp	Area nc	(t/año)	122582	257260	126058	126721	93499	154748	136765	80686	161211	127682		140544		26.5
			Qs susb	PEL	(t/año)	43872	80593	45254	38452	50810	24147	101581	26854	69472	99261		58030		10.9
			Qs snsb	CDL	(t/año)	96892	126732	83880	06899	116229	56122	141522	15906	118652	178648		86086		18.5
926	1.113	15.0%	Qs snsb	CHI	(t/año)	113235	206635	343424	22205	122776	44047	389896	48462	343341	676722		234424		44.1
		a no	medida	l/s/km ²	60.1	103.9	61.2	61.4	50.6	70.5	64.7	52.4	72.7	61.7		os:			
n²):	/m³):	ndidos)	Q Area no	mec	s/ _s m	20.2	34.9	20.6	20.6	17.0	23.7	21.7	17.6	24.4	20.7		spendid	totales:	sopipu
Area de aportación de sedimentos (km²):	ositados (1	ntos suspe	0 0	V PEL	s/ _s w	6.16	10.3	8.12	6.44	7.24	6.31	9.71	6.26	7.68	8.72		limentos su	sedimentos	ntos susper
de sedii	ntos dep	sedime	2	Q CDL	s/ _s m	12.4	18.1	14.3	11.9	14.4	11.9	15.2	10.9	14.4	16.9		dio de sec	nedio de	e sedime
aportación	de sedime	ndo (% de		2	s/ _s m	26.6	43.1	36.4	24.7	29.5	26.7	37.5	26.6	39.6	40.1		ión promed	ucción pror	lel caudal d
Area de	Densidad de sedimentos depositados (t/m^3):	Acarreo de fondo (% de sedimentos suspendidos):	Caudal	Alhajuela	m ₃ /s	65.4	106	79.4	63.7	68.2	9.89	84.1	61.3	86.1	86.4		Caudal y producción promedio de sedimentos suspendidos:	Caudal y producción promedio de sedimentos totales:	% del total del caudal de sedimentos suspendidos
	_	Ace		Año		1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	10	Caud	S	0`

años secos años húmedos

Cuadro I.3. Caudal y producción de sedimentos en la subcuenca del embalse Gatún para el periodo 1998-2007.

	Qs Total Gatún	MMC/año	0.467	0.658	0.477	0.162	0.332	0.602	0.408	0.265	0.553	0.636			0.456
	Qs suspendidos Gatún	(t/año/km²)	241	339	246	83.3	171	310	210	136	285	328		235	270
	Qs susp Ga	(t/año)	451738	636532	461443	156387	321153	582439	394932	256115	535097	615492		441133	507303 100
	Qs suspendidos Área no medida	(t/año/km²)	277	322	265	75.2	148	300	214	145	230	316		229	
	Qs susp Área no	(t/año)	388633	451807	371111	105358	206878	420660	300468	202532	322211	442107		321176	72.8
	Qs susp CAN	(t/año)	11134	49496	25615	21003	54199	55553	16320	14920	84541	56601		38938	89 89
	Qs susp CHR	(t/año)	22496	51660	22269	13988	43522	71814	29143	24046	74034	46763		39974	9.1
1878 1.113 15.0%	Qs susp CNT	(t/año)	29476	83569	42448	16039	16553	34412	49001	14617	54311	70020		41045	9.3
·-	Q Área no medida	I/s/km ²	50.5	52.5	49.2	28.4	36.3	53.0	43.6	36.0	45.3	54.7		.so	
n²): t/m³): endidos)	Q Áre: medi	s/ _s m	70.8	7.77	68.9	39.8	50.9	74.3	61.1	50.4	63.5	9.92		ıspendid	les: ndidos
ientos (kr isitados (tos suspe	Q CAN	s/ _s m	6.28	12.9	9.10	7.71	11.1	11.7	2.96	7.39	11.3	12.0		mentos su	entos tota tos suspe
Área de aportación de sedimentos (km²): ensidad de sedimentos depositados (t/m³ reo de fondo (% de sedimentos suspendic	Q CHR	s/ _s m	4.64	8.72	09.9	4.58	7.40	8.98	6.27	99.5	8.22	8.47		dio de sedi	Producción promedio de sedimentos totales: del total del caudal de sedimentos suspendic
portació e sedime ido (% d	Q CNT	s/ _s m	6.21	10.1	7.15	4.90	2.07	6.30	6.97	4.35	6.35	79.7		ón prome	n promed el caudal
Área de aportación de sedimentos (km²): Densidad de sedimentos depositados (t/m³): Acarreo de fondo (% de sedimentos suspendidos):	Caudal Gatún	s/ _s m	87.9	109	91.7	22.0	74.5	101	82.3	8.79	89.4	105		Caudal y producción promedio de sedimentos suspendidos:	Producción promedio de sedimentos totales: % del total del caudal de sedimentos suspendidos
Aca	Año		1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	10	Caud	6

años secos años húmedos

Tasas de sedimentación en el embalse Alhajuela: estudios previos, según batimetría de 2008 y mediciones de sedimentos en ríos. **CUADRO 1.4**

			Elevación	Volumen de Sedimento	en de nento	Almacena-	Tiempo	Pérdida de	Tassa ab	<u>0</u>	Eficiencia de	Producción
Estudio de Referencia	Método	Periodo	de Referencia	Acumulado Parcial To	ulado Total	miento Disponible	Requerido	Almacena- miento	Sedimentación	ntación	Retención de Embalse	de Sedimentos
			pie	MMC	MMC	MMC	años	%	MMC/año	%/año	%	t/año/km²
Silt Investigation 04/23/1931,	MSD 1030	1934-2000	252		3.7	795.8	29	0.5	0.056	0.007	97.61	61.9
Kellog,H.P. ^{1,2}	WON 1930	2001-2020	252	1.11	4.8	790.9	20	0.6	0.056	0.007	97.60	61.9
Erosion and Sediment Yield		1934-1973	252		36.5	763.0	39	4.6	0.937	0.12	97.43	1097
as Arrected by Land Use and Slope in the Panama Canal	Batimetria 70's	1974-1978	252	10.4	46.9	752.6	4	5.9	2.595	0.32	98.05	3019
Watershed,		1979-2000	252	134	180.7	618.8	22	22.6	6.080	0.76	96.79	7165
Curtis L. Larson, 1979 ¹		2001-2020	252	190	371.0	428.5	20	46.4	9.514	1.19	95.49	11365
		1934-1983	235		37.9	761.6	49	4.7	0.774	0.10	97.57	904
Sedimentation In Madden		1984-1990	235	13.7	51.6	747.9	7	6.5	1.960	0.25	96.92	2307
Reservoir,	Batimetria 1983	1991-2000	235	25.7	77.4	722.1	10	9.7	2.573	0.32	97.16	3021
Alvarado, Luis A.1985'' ³ .		2001-2010	235	31.9	109.2	690.3	10	13.7	3.186	0.40	96.99	3746
		2011-2020	235	38.0	147.2	652.3	10	18.4	3.798	0.48	96.76	4478
::::::::::::::::::::::::::::::::::::::	Batimetria 1983	1933-1983	252		44.5	755.0	20	5.6	0.890	0.11	97.55	1041
Madden Reservoir Sedimentation.	0	1933-1986	252		37.6	761.9	53	4.7	0.710	0.09	97.56	830
Tutzauer. Jack. R.: 1990 ⁴	MSK 1981-1986	1933-1986	252		46.0	753.5	53	5.8	0.868	0.11	97.56	1014
		1987-1999	252	9.0	55.0	744.5	13	6.9	0.695	0.00	97.10	816
Madden Reservoir Storage		1935-1983	252		86.8	700.4	49	10.9	1.771	0.22	97.32	2076
Capacity Loss,	Batimetria 1997	1984-1997	252	31.8	118.6	668.6	14	14.8	2.271	0.28	96.76	2678
Memorandum 17/dic/1997		1935-1997	252		118.6	668.6	63	14.8	1.883	0.24	97.25	2208
Sección de Recursos	Batimetria 1983	1935-1983	252		78.0	688.5	49	10.2	1.592	0.21	97.32	1866
Hídricos	Batimetria 1998	1984-1997	252	7.03	85.0	681.5	14	11.1	0.502	0.07	96.76	592
Unidad de Hidrología	Batimetria 2008	1998-2007	252	5.76	8.06	675.7	10	11.8	0.576	0.08	96.64	680
	MSR	1984-1997	252	4.81	82.8	683.7	14	10.8	0.343	0.04	96.76	405
EACK-HO/2008	1984-2007	1998-2007	252	5.30	90.3	676.2	10	11.8	0.530	0.07	96.64	626

Respecto a la capacidad total original: 799.5 MMC a la elevación de 252 pies

² Para la determinación de la producción de sedimento se uso el valor de la densidad repotada en el estudio (69.5 lbs/pie³).

³ La tasa de sedimentacion esta basada en el volumen de sedimento acumulado por debajo de 235 pies.

⁴ La tasa de sedimentación a partir de la batimetría esta basada en un ajuste para el volumen de sedimento no medido entre las elevaciones 235 y 252 pies.

⁵ Respecto a la capacidad total original: 787.2 MMC a la elevación de 252 pies ⁶ Respecto a la capacidad total original: 766.5 MMC a la elevación de 252 pies

Tasa de sedimentación proyectada.

Cuadro I.5. Volumen de sedimentos depositados y tasas de sedimentación en la subcuenca del embalse Alhajuela (1984-1997) y Gatún, (1987-1997).

Subci	uenca del lago	Alhajuela		
Subcuencas del lago Alhajuela	Área	ql	qs	Qs
Subcuericas dei lago Alriajuela	km²	(l/s/km²)	(t/año/km²)	(t/año)
Río Chagres en Chico (CHI)	414	74.6	232	95878
Río Pequení en Candelaria (CDL)	135	99.9	375	50588
Río Boqueron en Peluca (PEL)	91	84.8	505	45994
No medido: entre CHI, CDL, PEL y Represa	336	69.3	449	150927

Area de aportación 976

_			•							
u	2	r	2	r	n			r	^	
Р	а		а	ш	•	C	ı		v	

Caudal de sedimentos suspendidos (t/año)	343387
Producción promedio de sedimentos suspendidos (t/año/km²)	352
Considerando 15.0% de acarreo de fondo (t/año)	394895
Producción promedio de sedimentos totales (t/año/km²)	405
Densidad de sedimentos depositados (t/m³)	1.113
Eficiencia de retención de embalse	96.8%
Volumen de sedimentos depositados 1984-1997 (MMC)	4.81
Tasa de sedimentación en MMC/año	0.343
Tasa de sedimentación en %/año	0.04

Subc	uenca del lag	go Gatún		
Subcuencas del lago Gatún	Área	ql	qs	Qs
Subcuericas dei lago Galuri	km²	(l/s/km ²)	(t/año/km²)	(t/año)
Río Trinidad en El Chorro (CHR)	174	34.9	103	18002
Río Gatún en Ciento (CNT)	117	56.5	282	32969
Río Ciri Grande en Los Cañones (CAN)	186	46.4	178	33118
No Medido:entre Madden, CNT,	1401	36.1	145	
CHR,CAN y Represa	1401	30.1	140	203327

1878 Area de aportación

Parámetro:	
Caudal de sedimentos suspendidos (t/año)	287415
Producción promedio de sedimentos suspendidos (t/año/km²)	153
Considerando 15.0% de acarreo de fondo (t/año)	330528
Producción promedio de sedimentos totales (t/año/km²)	176
Densidad de sedimentos depositados (t/m³)	1.113
Eficiencia de retención de embalse	100%
Volumen de sedimentos depositados 1987-1997 (MMC)	3.27
Tasa de sedimentación en MMC/año	0.297
Tasa de sedimentación en %/año	0.005
Producción promedio de sedimentos suspendidos CHCP (t/año/km²)	221
Producción promedio de sedimentos totales CHCP (t/año/km²)	254

Cuadro I.6. Volumen de sedimentos depositados y tasas de sedimentación en la subcuenca del embalse Alhajuela y Gatún, (1998-2007).

Subcue	enca del lago <i>l</i>	Alhajuela		
Subcuencas del lago Alhajuela	Área	ql	qs	Qs
Subcuericas dei lago Alriajdela	km²	(l/s/km²)	(t/año/km²)	(t/año)
Río Chagres en Chico (CHI)	414	79.8	566	234424
Río Pequení en Candelaria (CDL)	135	104	727	98098
Río Boquerón en Peluca (PEL)	91	84.5	638	58030
No medido: entre CHI, CDL, PEL y	336	65.9	418	140544
Represa		05.9	410	140344
Área de aportación:	976			
Parámetro:				
Caudal de sedimentos suspendidos (t/ar	•	2.		531095
Producción promedio de sedimentos sus	spendidos (t/a	ıño/km²)		544
Considerando 15.0% de acarreo de fonde	o (t/año)			610760
Producción promedio de sedimentos tot	• •	²)		626
Densidad de sedimentos depositados (t/	'm³)			1.113
Eficiencia de retención de embalse	•			96.6%
Volumen de sedimentos depositados 19	98-2007 (MMC)		5.30
Tasa de sedimentación en MMC/año				0.530
Tasa de sedimentación en %/año				0.07
Subcu	enca del lago	o Gatún		
Subauanasa dal laga Catún	Área	ql	qs	Qs
Subcuencas del lago Gatún	Área km²	ql (l/s/km²)	qs (t/año/km²)	Qs (t/año)
		•		(t/año)
Río Trinidad en El Chorro (CHR)	km ² 174	(l/s/km ²) 40.0	(t/año/km²) 230	(t/año) 39974
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT)	km ² 174 117	(l/s/km ²) 40.0 55.8	(t/año/km²) 230 351	(t/año) 39974 41045
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN)	km ² 174	(l/s/km ²) 40.0	(t/año/km²) 230	(t/año) 39974 41045
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT,	km ² 174 117	(l/s/km ²) 40.0 55.8	(t/año/km²) 230 351	(t/año) 39974 41045 38938
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN)	km ² 174 117 186	(l/s/km²) 40.0 55.8 52.4	(t/año/km²) 230 351 209	
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Área de aportación:	km ² 174 117 186	(l/s/km²) 40.0 55.8 52.4	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Ārea de aportación: Parámetro:	km ² 174 117 186 1401 1878	(l/s/km²) 40.0 55.8 52.4	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ	km ² 174 117 186 1401 1878	(I/s/km²) 40.0 55.8 52.4 45.3	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Ārea de aportación: Parámetro:	km ² 174 117 186 1401 1878	(I/s/km²) 40.0 55.8 52.4 45.3	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ	km ² 174 117 186 1401 1878 ño) spendidos (t/a	(I/s/km²) 40.0 55.8 52.4 45.3	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus	km ² 174 117 186 1401 1878 ňo) spendidos (t/a	(l/s/km²) 40.0 55.8 52.4 45.3	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus	km ² 174 117 186 1401 1878 ňo) spendidos (t/a	(l/s/km²) 40.0 55.8 52.4 45.3	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303 270
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/	km² 174 117 186 1401 1878 ño) spendidos (t/a o (t/año) ales (t/año/km	(l/s/km²) 40.0 55.8 52.4 45.3	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303 270
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/Eficiencia de retención de embalse	km² 174 117 186 1401 1878 ňo) spendidos (t/a o (t/año) ales (t/año/km²)	(l/s/km²) 40.0 55.8 52.4 45.3 m̃o/km²)	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303 270
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/Eficiencia de retención de embalse Volumen de sedimentos depositados 196	km² 174 117 186 1401 1878 ňo) spendidos (t/a o (t/año) ales (t/año/km²)	(l/s/km²) 40.0 55.8 52.4 45.3 m̃o/km²)	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303 270 1.113 100%
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/ Eficiencia de retención de embalse Volumen de sedimentos depositados 1987 Tasa de sedimentación en MMC/año	km² 174 117 186 1401 1878 ňo) spendidos (t/a o (t/año) ales (t/año/km²)	(l/s/km²) 40.0 55.8 52.4 45.3 m̃o/km²)	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303 270 1.113 100% 4.56 0.456
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/Eficiencia de retención de embalse Volumen de sedimentos depositados 196	km² 174 117 186 1401 1878 ňo) spendidos (t/a o (t/año) ales (t/año/km²)	(l/s/km²) 40.0 55.8 52.4 45.3 m̃o/km²)	(t/año/km²) 230 351 209	(t/año) 39974 41045 38938 321176 441133 235 507303 270 1.113 100% 4.56 0.456
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Ārea de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/ Eficiencia de retención de embalse Volumen de sedimentos depositados 19: Tasa de sedimentación en MMC/año Tasa de sedimentación en %/año	km² 174 117 186 1401 1878 ño) spendidos (t/a o (t/año) ales (t/año/km² /m³)	(l/s/km²) 40.0 55.8 52.4 45.3 mo/km²)	(t/año/km²) 230 351 209 229	(t/año) 39974 41045 38938 321176 441133 235 507303 270 1.113 100% 4.56 0.456 0.008
Río Trinidad en El Chorro (CHR) Río Gatún en Ciento (CNT) Río Cirí Grande en Los Cañones (CAN) No Medido:entre Madden, CNT, CHR,CAN y Represa Area de aportación: Parámetro: Caudal de sedimentos suspendidos (t/añ Producción promedio de sedimentos sus Considerando 15.0% de acarreo de fonde Producción promedio de sedimentos tot Densidad de sedimentos depositados (t/ Eficiencia de retención de embalse Volumen de sedimentos depositados 1987 Tasa de sedimentación en MMC/año	km ² 174 117 186 1401 1878 no) spendidos (t/a o (t/año) ales (t/año/km /m³) 98-2006 (MMC	(l/s/km²) 40.0 55.8 52.4 45.3 mo/km²) CP (t/año/km²	(t/año/km²) 230 351 209 229	(t/año) 39974 41045 38938

Cuadro I.7. Cálculo de la vida media del embalse Alhajuela

Capacidad inicial del embalse (1934) en MMC:
Capacidad actual del embalse (2008) en MMC:
Caudal de entrada en MMC:
Producción de Sedimentos en t/año/km²:
Área de Drenaje en km²:
Densidad de sedimentos depositados en t/m³:
Año de Inicio:

0.00	675.7	2428	089	926	1.113	2008

j -	Capacidad	Volumen de	Pérdida de	Relación	Relación	Eficiencia de	Tiempo de	Tiempo	Tasa de
Periodo de Liempo	Disponible	Sedimentos Depositados	Capacidad de Almacenamiento	5	C/I Promedio	Retención de Embalse	Llenado (años)	Acumulado	Sedimentación
Inicial	(MMC)	(MMC)	(%)			(%)	(años)	(años)	(MMC/año)
2008	929	0.00	11.8	0.2783	0.2783	96.62			
2081	633	42.2	17.4	0.2609	0.2696	96.48	73	23	0.575
2155	591	84.5	22.9	0.2435	0.2522	96.21	74	147	0.574
2229	549	127	28.4	0.2261	0.2348	28.86	74	221	0.572
2303	202	169	33.9	0.2087	0.2174	95.33	74	295	0.568
2378	465	211	39.4	0.1913	0.2000	94.78	75	370	0.565
2453	422	253	44.9	0.1739	0.1826	94.24	75	445	0.562
2529	380	296	50.4	0.1565	0.1652	93.55	9/	521	0.558
2605	338	338	629	0.1391	0.1478	92.76	9/	269	0.553
2682	296	380	61.4	0.1218	0.1305	91.94	2.2	674	0.548
2760	253	422	6.99	0.1044	0.1131	90.64	78	752	0.540
2840	211	465	72.5	0.0870	2560.0	89.04	80	832	0.531
2921	169	207	78.0	9690.0	0.0783	86.78	82	913	0.517
3006	127	549	83.5	0.0522	6090'0	83.41	85	866	0.497
3098	84.5	591	89.0	0.0348	0.0435	77.31	92	1090	0.461
3202	42.2	633	94.5	0.0174	0.0261	67.94	104	1194	0.405
3329	00.00	929	100.0	0.0000	2800'0	45.19	157	1351	0.269

109 años	176 años	515 años
20% de pérdida en la capacidad de almacenamiento	25% de pérdida en la capacidad de almacenamiento	50% de pérdida en la capacidad de almacenamiento

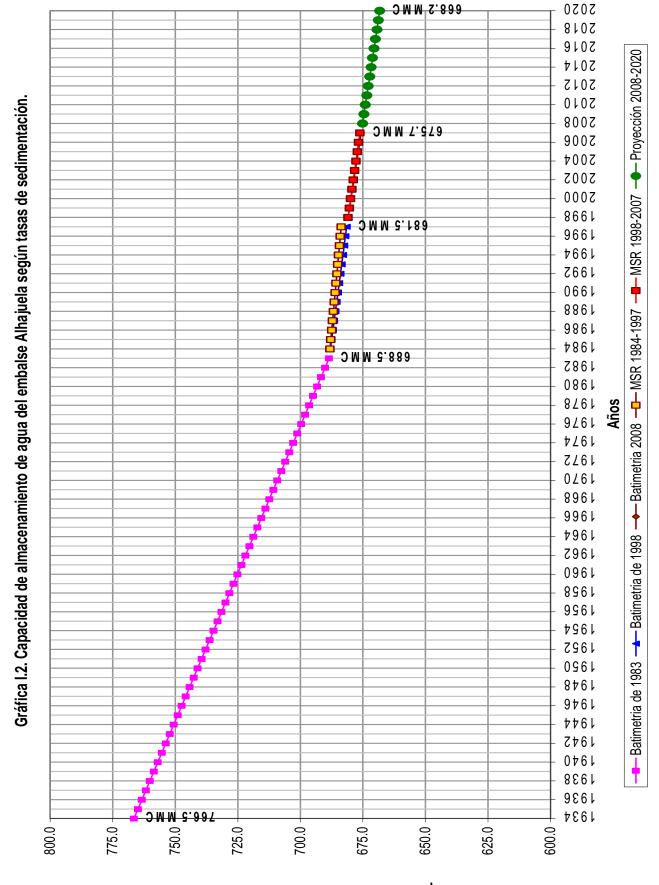
Cuadro I.8. Cálculo de la vida media del embalse Gatún

Capacidad inicial del embalse (1913) en MMC: Capacidad actual del embalse (2008) en MMC: Caudal de entrada en MMC: Producción de Sedimentos en t/año/km²: Área de Drenaje en km²: Densidad de sedimentos depositados en t/m³:

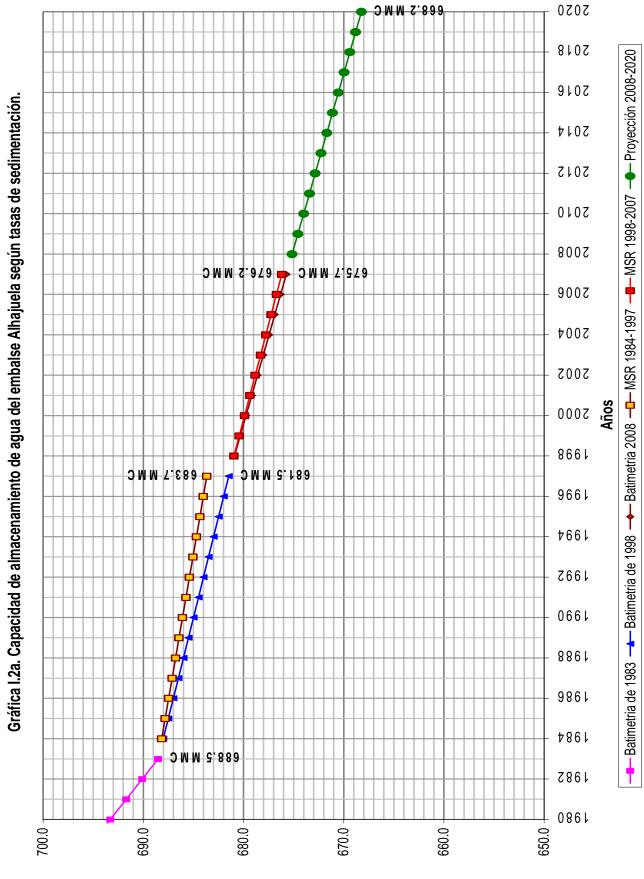
Año de Inicio:

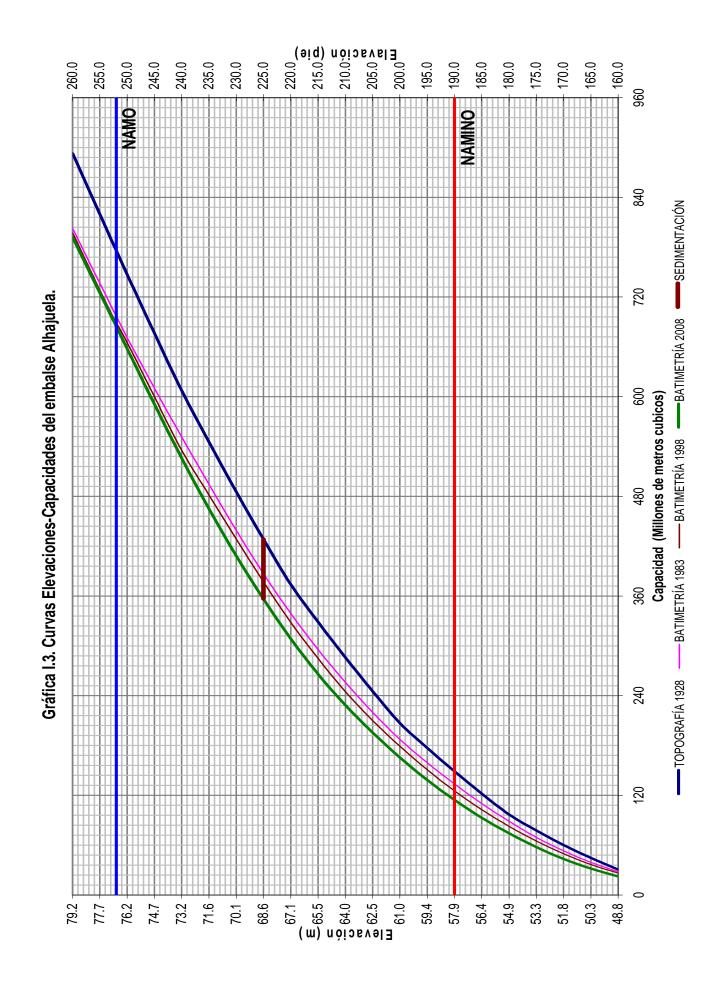
5493	5395	2731	270	1878	1.113	2008

po Tasa de lado Sedimentación	s) (MMC/año)		0.456	0.456	0 0.456	4 0.456	7 0.456	0 0.456	4 0.455	9 0.454	4 0.454	0 0.453	7 0.452	5 0.452	3 0.451	2 0.450	2 0.450	2 0.449	3 0.448	5 0.448	8 0.447	1 0.446	0.441	71 0.433	0 0.416	68 0.347
Tiempo Acumulado	(años)		493	286	1480	1974	2467	2960	3454	3949	4444	4940	5437	5935	6433	6932	7432	7932	8433	8935	9438	9941	10451	10971	11510	12158
Tiempo de Llenado (años)	(años)		493	493	493	493	493	493	494	495	495	496	497	498	498	499	200	200	501	502	203	203	510	520	540	648
Eficiencia de Retención de Embalse	(%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	68.66	99.75	09.66	99.46	99.31	99.17	99.02	98.88	98.73	98.59	98.44	98.30	98.15	98.01	22.96	94.96	91.42	76.18
Relación C/I Promedio		1.9753	1.9342	1.8519	1.7696	1.6873	1.6050	1.5227	1.4403	1.3580	1.2757	1.1934	1.1111	1.0288	0.9465	0.8642	0.7819	9669.0	0.6173	0.5350	0.4527	0.3704	0.2881	0.2058	0.1235	0.0412
Relación C/I		1.9753	1.8930	1.8107	1.7284	1.6461	1.5638	1.4815	1.3992	1.3169	1.2346	1.1523	1.0700	0.9877	0.9054	0.8231	0.7408	0.6584	0.5761	0.4938	0.4115	0.3292	0.2469	0.1646	0.0823	0.0000
Pérdida de Capacidad de Almacenamiento	(%)	1.8	5.9	10.0	14.1	18.2	22.3	26.3	30.4	34.5	38.6	42.7	46.8	50.9	55.0	59.1	63.2	67.3	71.4	75.4	79.5	83.6	87.7	91.8	626	100.0
Volumen de Sedimentos Depositados	(MMC)	00.00	225	450	674	668	1124	1349	1573	1798	2023	2248	2473	2697	2922	3147	3372	3596	3821	4046	4271	4496	4720	4945	5170	5395
Capacidad Disponible	(MMC)	2689	5170	4945	4720	4496	4271	4046	3821	3296	3372	3147	2922	2697	2473	2248	2023	1798	1573	1349	1124	668	674	450	225	00.00
Periodo de Tiempo	Inicial	2008	2501	2995	3488	3982	4475	4968	5462	2957	6452	6948	7445	7943	8441	8940	9440	9940	10441	10943	11446	11949	12459	12979	13518	14166
Periodo d	L	0	1	7	3	7	9	9	2	8	6	10	11	12	13	14	15	16	11	18	19	20	21	22	23	24

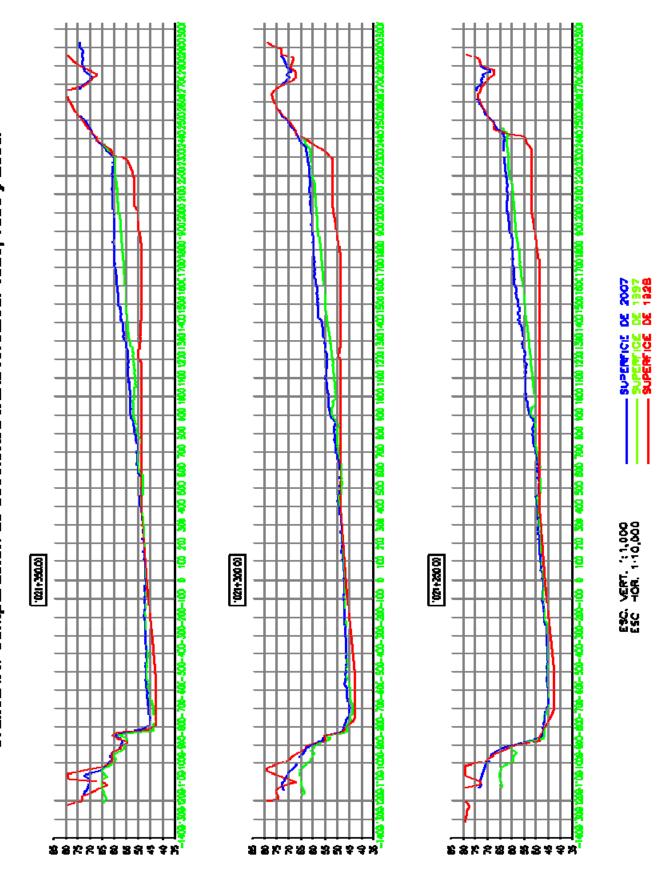

5% de pérdida en la capacidad de almacenamiento 25% de pérdida en la capacidad de almacenamiento 50% de pérdida en la capacidad de almacenamiento

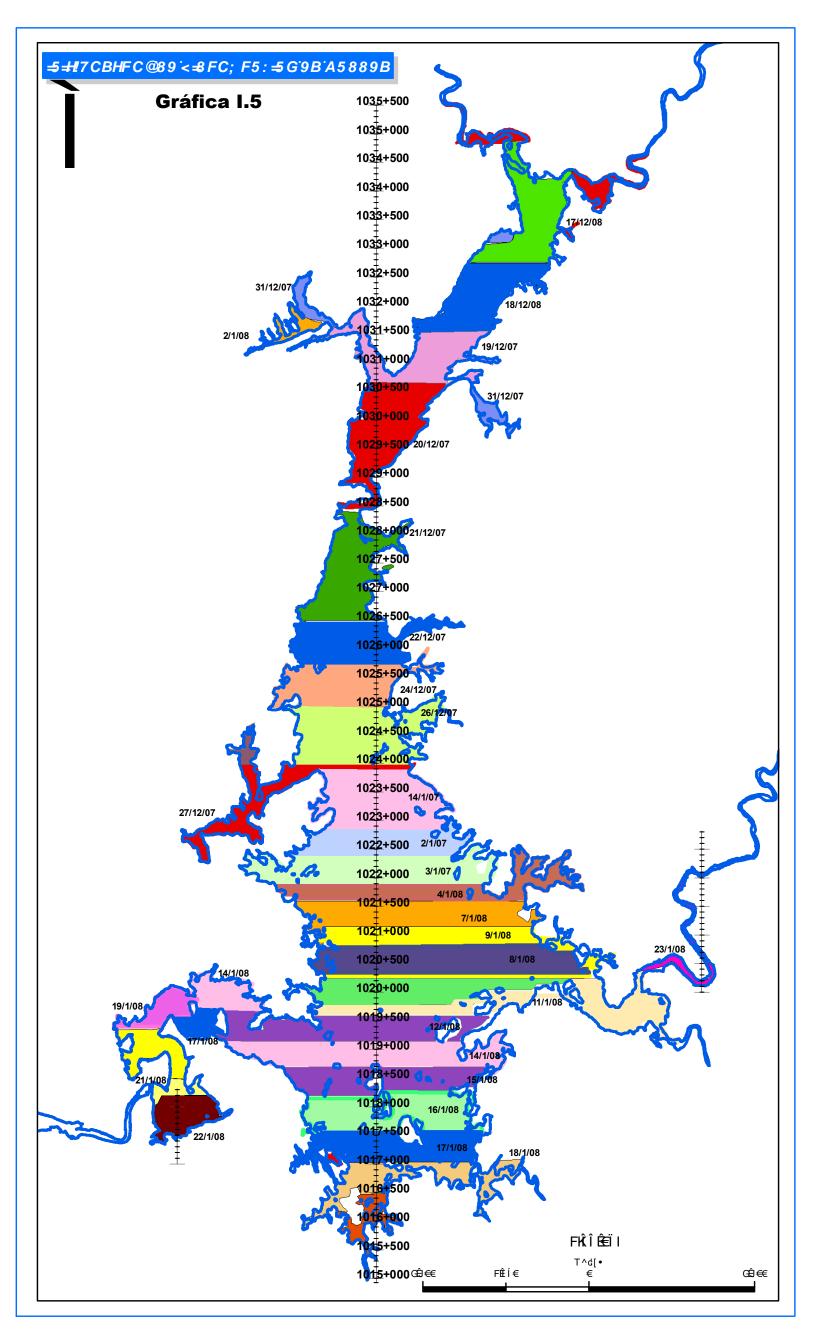
387 años 2798 años 5826 años


110 y = 9.1471x - 184.7538Candelaria 100 $R^2 = 0.9557$ 8 Peluca 8 Chico 2 Caudal específico (I/s/km²) Periodo de análisis: 1998-2007 9 Ciento Los Cañones 20 El Chorro 4 Caño Quebrado 30 20 9 0 Producción de Sedimentos Suspendidos (t/año/km²) 0 900


Gráfica I.1. Producción de Sedimentos Suspendidos versus Caudal Específico

OMM na ofnaimanasamla ab babisaqaD




Capacidad de almacenamiento en MMC

Gráfica I.4. Comparación de secciones transversales: 1928, 1998 y 2008.

Fotos de la parte alta de la subcuenca del río Chagres donde se observan deslizamientos naturales. Fuente: Informe de sobrevuelo Alto Chagres realizado por la Unidad de Sensores Remotos (7 de septiembre de 2007).